1
|
Asadian M, Hassanzadeh SM, Safarchi A, Douraghi M. The effect of in vitro consecutive passages and culture medium on the genetic variations in BCG Pasteur 1173P2 vaccine. PLoS One 2023; 18:e0280294. [PMID: 36689397 PMCID: PMC9870133 DOI: 10.1371/journal.pone.0280294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
Since the introduction of the Bacillus Calmette-Guérin (BCG) vaccine, the genomes of vaccine strains have undergone variations due to repeated passages in different laboratories and vaccine production facilities. Genetic variations have been considered as one of the effective factors in the BCG variable protective efficacy. Consecutive subcultures have been shown to play an essential role in causing genetic variations in several microorganisms, including Mycobacterium bovis BCG. Therefore, the world health organization (WHO) recommendation to limit the passages of master seed lot in the BCG vaccine production should be considered. Besides, the role of other external variables such as quality of the raw ingredients of the culture media, the type of the culture medium and the cultivation methods in the vaccine production has been poorly studied. Here, the effect of passages and culture medium on genetic variations in a BCG seed lot was investigated during a year. The findings of this study revealed a total of 19 variants compared to seed lot while the passages were more than the number recommended by WHO. The first culture of seed lot in the Sauton broth and Middlebrook 7H9 media, and the last subculture in Sauton broth had the least and the most variants, respectively. The observation of the higher number of variants in the last cultures on Sauton broth and Middlebrook 7H9 in comparison to the first and the middle cultures may indicate the effect of passages on the genetic variations in BCG. Additionally, more variants in BCG grown in the Sauton broth do not necessarily represent the greater ability of this medium to cause genetic mutations. For a better conclusion, it is required to examine the medium components as independent variables.
Collapse
Affiliation(s)
- Mahla Asadian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Safarchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Silva WM, Dorella FA, Soares SC, Souza GHMF, Castro TLP, Seyffert N, Figueiredo H, Miyoshi A, Le Loir Y, Silva A, Azevedo V. A shift in the virulence potential of Corynebacterium pseudotuberculosis biovar ovis after passage in a murine host demonstrated through comparative proteomics. BMC Microbiol 2017; 17:55. [PMID: 28327085 PMCID: PMC5361795 DOI: 10.1186/s12866-017-0925-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/04/2017] [Indexed: 01/19/2023] Open
Abstract
Background Corynebacterium pseudotuberculosis biovar ovis, a facultative intracellular pathogen, is the etiologic agent of caseous lymphadenitis in small ruminants. During the infection process, C. pseudotuberculosis changes its gene expression to resist different types of stresses and to evade the immune system of the host. However, factors contributing to the infectious process of this pathogen are still poorly documented. To better understand the C. pseudotuberculosis infection process and to identify potential factors which could be involved in its virulence, experimental infection was carried out in a murine model using the strain 1002_ovis and followed by a comparative proteomic analysis of the strain before and after passage. Results The experimental infection assays revealed that strain 1002_ovis exhibits low virulence potential. However, the strain recovered from the spleen of infected mice and used in a new infection challenge showed a dramatic change in its virulence potential. Label-free proteomic analysis of the culture supernatants of strain 1002_ovis before and after passage in mice revealed that 118 proteins were differentially expressed. The proteome exclusive to the recovered strain contained important virulence factors such as CP40 proteinase and phospholipase D exotoxin, the major virulence factor of C. pseudotuberculosis. Also, the proteome from recovered condition revealed different classes of proteins involved in detoxification processes, pathogenesis and export pathways, indicating the presence of distinct mechanisms that could contribute in the infectious process of this pathogen. Conclusions This study shows that C. pseudotuberculosis modifies its proteomic profile in the laboratory versus infection conditions and adapts to the host context during the infection process. The screening proteomic performed us enable identify known virulence factors, as well as potential proteins that could be related to virulence this pathogen. These results enhance our understanding of the factors that might influence in the virulence of C. pseudotuberculosis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0925-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanderson M Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,INRA, UMR1253 STLO, 35042, Rennes, France.,Agrocampus Ouest, UMR1253 STLO, 35042, Rennes, France
| | - Fernanda A Dorella
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar C Soares
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo H M F Souza
- Waters Corporation, Waters Technologies Brazil, MS Applications Laboratory, Alphaville, São Paulo, Brazil
| | - Thiago L P Castro
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Núbia Seyffert
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Figueiredo
- Aquacen, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson Miyoshi
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Yves Le Loir
- INRA, UMR1253 STLO, 35042, Rennes, France.,Agrocampus Ouest, UMR1253 STLO, 35042, Rennes, France
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Guamá, Belém, Pará, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Construction of an unmarked recombinant BCG expressing a pertussis antigen by auxotrophic complementation: protection against Bordetella pertussis challenge in neonates. Vaccine 2009; 27:7346-51. [PMID: 19782111 DOI: 10.1016/j.vaccine.2009.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/02/2009] [Accepted: 09/13/2009] [Indexed: 10/20/2022]
Abstract
Mycobacterium bovis BCG has long been investigated as a candidate for heterologous antigen presentation. We have previously described an rBCG-Pertussis that confers protection against challenge with Bordetella pertussis in neonate and adult mice. In order to obtain stable expression in vivo, we constructed an unmarked BCG lysine auxotrophic and a complementation vector containing the lysine and the genetically detoxified S1 pertussis toxin genes, both under control of the same promoter. Complemented BCG-Delta lysine growth and expression of the pertussis antigen were stable, without the use of an antibiotic marker. Our results show that the complemented rBCG-Delta lysA-S1PT-lysA(+)(kan(-)), which is now suitable to be evaluated in clinical trials, maintains similar characteristics of the original rBCG-pNL71S1PT strain, such as the antigen expression level, cellular immune response and protection against the same model challenge in neonatal-immunized mice.
Collapse
|