1
|
Raviranga NGH, Ramström O. Antimicrobial Delivery Using Metallophore-Responsive Dynamic Nanocarriers. ACS APPLIED BIO MATERIALS 2024; 7:4785-4794. [PMID: 38963757 DOI: 10.1021/acsabm.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The increasing prevalence of multidrug-resistant (MDR) pathogens has promoted the development of innovative approaches, such as drug repurposing, synergy, and efficient delivery, in complement to traditional antibiotics. In this study, we present an approach based on biocompatible nanocarriers containing antimicrobial cations and known antibiotics. The matrices were prepared by coordinating GaIII or InIII to formulations of chitosan/tripolyphosphate or catechol-functionalized chitosan with or without encapsulated antibiotics, yielding particles of 100-200 nm in hydrodynamic diameter. MDR clinical isolates of Pseudomonas aeruginosa were found to be effectively inhibited by the nanocarriers under nutrient-limiting conditions. Fractional inhibitory concentration (FIC) indices revealed that cation- and antibiotic-encapsulated nanomatrices were effective against both Gram-negative and Gram-positive pathogens. Metallophores, such as deferoxamine (DFO), were probed to facilitate the sequestration and transport of the antimicrobial cations GaIII or InIII. Although the antimicrobial activities were less significant with DFO, the eradication of biofilm-associated bacteria showed promising trends against P. aeruginosa and Staphylococcus epidermidis. Interestingly, indium-containing compounds showed enhanced activity on biofilm formation and eradication, neutralizing P. aeruginosa under Fe-limiting conditions. In particular, InIII-cross-linked catechol-modified chitosan matrices were able to inhibit pathogenic growth together with DFO. The nanocarriers showed low cytotoxicity toward A549 cells and improvable CC50 values with NIH/3T3 cells.
Collapse
Affiliation(s)
- N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., 01854 Lowell, Massachusetts, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., 01854 Lowell, Massachusetts, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
2
|
Herrera S, Yoshinaga M, Raptis RG. "Antibacterial properties of nine indium(III) complexes of substituted pyrazoles/pyrazolate and the structural and solution characterization of the mer- and trans‑indium(III) complexes of 4-Me-pzH". J Inorg Biochem 2024; 250:112402. [PMID: 37857057 DOI: 10.1016/j.jinorgbio.2023.112402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Two indium(III) complexes of formula mer-[InIIICl3(4-Me-pzH)3] and trans-[InIIICl2(4-Me-pzH)4]Cl·(4-Me-pzH)2·(H2O) were isolated from the same reaction mixture and crystallographically characterized. The two complexes exist in dynamic equilibrium and their dynamic behavior was probed by variable temperature 1H NMR spectroscopy in the 202 to 296 K range. Powder X-ray diffraction of the batch confirmed existence of both complexes in a 1:2 ratio. Antibacterial properties of both new complexes, in addition to seven other previously published indium(III) complexes, were investigated against three Gram-positive and four Gram-negative pathogenic bacterial strains. The results showed potential for the development of indium(III)-based antipseudomonal and antituberculosis drugs, with mer-[InCl3(4-Ph-pzH)3] being especially effective.
Collapse
Affiliation(s)
- Susana Herrera
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Raphael G Raptis
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
3
|
Leitao RCF, Silva F, Ribeiro GH, Santos IC, Guerreiro JF, Mendes F, Batista AA, Pavan FR, da S Maia PI, Paulo A, Deflon VM. Gallium and indium complexes with isoniazid-derived ligands: Interaction with biomolecules and biological activity against cancer cells and Mycobacterium tuberculosis. J Inorg Biochem 2023; 240:112091. [PMID: 36527994 DOI: 10.1016/j.jinorgbio.2022.112091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Gallium and indium octahedral complexes with isoniazid derivative ligands were successfully prepared. The ligands, isonicotinoyl benzoylacetone (H2L1) and 4-chlorobenzoylacetone isonicotinoyl hydrazone (H2L2), and their respective coordination compounds with gallium and indium [GaL1(HL1)] (GaL1), [GaL2(HL2)] (GaL2), [InL1(HL1)] (InL1) and [InL2(HL2)] (InL2) were investigated by NMR, ESI-MS, UV-Vis, IR, single-crystal X-ray diffraction and elemental analysis. In vitro interaction studies with human serum albumin (HSA) evidenced a moderate affinity of all complexes with HSA through spontaneous hydrophobic interactions. The greatest suppression of HSA fluorescence was caused by GaL2 and InL2, which was associated to the higher lipophilicity of H2L2. In vitro interaction studies with CT-DNA indicated weak interactions of the biomolecule with all complexes. Cytotoxicity assays with MCF-7 (breast carcinoma), PC-3 (prostate carcinoma) and RWPE-1 (healthy human prostate epithelial) cell lines showed that complexes with H2L2 are more active and selective against MCF-7, with the greatest cytotoxicity observed for InL2 (IC50 = 10.34 ± 1.69 μM). H2L1 and H2L2 were labelled with gallium-67, and it was verified that 67GaL2 has a greater lipophilicity than 67GaL1, as well as higher stability in human serum or in the presence of apo-transferrin. Cellular uptake assays with 67GaL1 and 67GaL2 evidenced that the H2L2-containing radiocomplex has a higher accumulation in MCF-7 and PC-3 cells than the non-halogenated congener 67GaL1. The anti-Mycobacterium tuberculosis assays revealed that both ligands and metal complexes are potent growth inhibitors, with MIC90 (μg mL-1) values observed from 0.419 ± 0.05 to 1.378 ± 0.21.
Collapse
Affiliation(s)
- Renan C F Leitao
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Gabriel H Ribeiro
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Isabel C Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal; Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal; Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Fernando R Pavan
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, 14.800-903 Araraquara, SP, Brazil
| | - Pedro Ivo da S Maia
- Departamento de Química, Universidade Federal do Triângulo Mineiro, 38025-440 Uberaba, MG, Brazil
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal; Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Victor M Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Beraldo H. Pharmacological applications of non-radioactive indium(III) complexes: A field yet to be explored. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Salsi F, Roca Jungfer M, Hagenbach A, Abram U. Trigonal‐Bipyramidal vs. Octahedral Coordination in Indium(III) Complexes with Potentially
S,N,S
‐Tridentate Thiosemicarbazones. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Federico Salsi
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34‐36 14195 Berlin Germany
| | - Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34‐36 14195 Berlin Germany
| | - Adelheid Hagenbach
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34‐36 14195 Berlin Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34‐36 14195 Berlin Germany
| |
Collapse
|
6
|
The complex formation of indium(III) acetate with alkyl-substituted 3,3′-bis(dipyrromethene) ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Samart N, Arhouma Z, Kumar S, Murakami HA, Crick DC, Crans DC. Decavanadate Inhibits Mycobacterial Growth More Potently Than Other Oxovanadates. Front Chem 2018; 6:519. [PMID: 30515375 PMCID: PMC6255961 DOI: 10.3389/fchem.2018.00519] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/09/2018] [Indexed: 01/06/2023] Open
Abstract
51V NMR spectroscopy is used to document, using speciation analysis, that one oxometalate is a more potent growth inhibitor of two Mycobacterial strains than other oxovanadates, thus demonstrating selectivity in its interaction with cells. Historically, oxometalates have had many applications in biological and medical studies, including study of the phase-problem in X-ray crystallography of the ribosome. The effect of different vanadate salts on the growth of Mycobacterium smegmatis (M. smeg) and Mycobacterium tuberculosis (M. tb) was investigated, and speciation was found to be critical for the observed growth inhibition. Specifically, the large orange-colored sodium decavanadate (V10O 28 6 - ) anion was found to be a stronger inhibitor of growth of two mycobacterial species than the colorless oxovanadate prepared from sodium metavanadate. The vanadium(V) speciation in the growth media and conversion among species under growth conditions was monitored using 51V NMR spectroscopy and speciation calculations. The findings presented in this work is particularly important in considering the many applications of polyoxometalates in biological and medical studies, such as the investigation of the phase-problem in X-ray crystallography for the ribosome. The findings presented in this work investigate the interactions of oxometalates with other biological systems.
Collapse
Affiliation(s)
- Nuttaporn Samart
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
- Department of Chemistry, Rajabhat Rajanagarindra University, Chachoengsao, Thailand
| | - Zeyad Arhouma
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Santosh Kumar
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Heide A. Murakami
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Oliveira AA, Perdigão GMC, Rodrigues LE, da Silva JG, Souza-Fagundes EM, Takahashi JA, Rocha WR, Beraldo H. Cytotoxic and antimicrobial effects of indium(iii) complexes with 2-acetylpyridine-derived thiosemicarbazones. Dalton Trans 2018; 46:918-932. [PMID: 28009892 DOI: 10.1039/c6dt03657k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Complexes [In(2Ac4oClPh)Cl2(MeOH)] (1), [In(2Ac4pFPh)Cl2(MeOH)] (2), [In(2Ac4pClPh)Cl2(MeOH)] (3) and [In(2Ac4pIPh)Cl2(MeOH)] (4) were obtained with N(4)-ortho-chlorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4oClPh), N(4)-para-fluorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pFPh), N(4)-para-chlorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pClPh) and N(4)-para-iodophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pIPh). Theoretical studies suggested that the coordinated methanol molecule can be easily replaced by DMSO used in the preparation of stock solutions, with the formation of [In(L)Cl2(DMSO)] (HL = thiosemicarbazonate ligand), and that the replacement of DMSO by water is unfavorable. However, for all complexes the displacement of one or two chloride ligands by water in aqueous solution is extremely favorable. The cytotoxic activity of the compounds was evaluated against HL-60, Jurkat and THP-1 leukemia and against MDA-MB-231 and HCT-116 solid tumor cell lines, as well as against Vero non-malignant cells. The cytotoxicity and selectivity indexes (SI) increased in several cases for the indium(iii) complexes in comparison with the free thiosemicarbazones. The antimicrobial activity of the compounds was investigated against Candida albicans, Candida dubliniensis, Candida lusitaniae and Candida parapsilosis. In many cases complexation resulted in a substantial increase of the antifungal activity. Complexes (1-4) were revealed to be very active against C. lusitaniae and C. dubliniensis. Structure-activity relationship (SAR) studies were carried out to identify the physico-chemical properties that might be involved in the antifungal action, as well as in the cytotoxic effect of the compounds against HL-60 cells. In both cases, correlations between the bioactivity and physico-chemical properties did not appreciably change when the chloride ligands in [In(L)Cl2(DMSO)] were replaced by water molecules, suggesting [In(L)Cl(H2O)(DMSO)]+ or [In(L)(H2O)2(DMSO)]2+ to be the species that interact with the biological media.
Collapse
Affiliation(s)
- Alexandre A Oliveira
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Gabriele M C Perdigão
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Luana E Rodrigues
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Jeferson G da Silva
- Departamento de Farmácia, Universidade Federal de Juiz de Fora, Campus Governador Valadares, 35010-177 Governador Valadares, MG, Brazil
| | - Elaine M Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Jacqueline A Takahashi
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Willian R Rocha
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Heloisa Beraldo
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Werrett MV, Herdman ME, Brammananth R, Garusinghe U, Batchelor W, Crellin PK, Coppel RL, Andrews PC. Bismuth Phosphinates in Bi-Nanocellulose Composites and their Efficacy towards Multi-Drug Resistant Bacteria. Chemistry 2018; 24:12938-12949. [PMID: 29911327 DOI: 10.1002/chem.201801803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/06/2018] [Indexed: 12/11/2022]
Abstract
A series of poorly soluble phenyl bis-phosphinato bismuth(III) complexes [BiPh(OP(=O)R1 R2 )2 ] (R1 =R2 =Ph; R1 =R2 =p-OMePh; R1 =R2 =m-NO2 Ph; R1 =Ph, R2 =H; R1 =R2 =Me) have been synthesised and characterised, and shown to have effective antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). The bismuth complexes were incorporated into microfibrillated (nano-) cellulose generating a bismuth-cellulose composite as paper sheets. Antibacterial evaluation indicates that the Bi-cellulose materials have analogous or greater activity against Gram positive bacteria when compared with commercial silver based additives: silver sulfadiazine loaded at 0.43 wt % into nanocellulose produces a 10 mm zone of inhibition on the surface of agar plates containing S. aureus whereas [BiPh(OP(=O)Ph2 )2 ] loaded at 0.34 wt % produces an 18 mm zone of inhibition. These phenyl bis-phosphinato bismuth(III) complexes show potential to be applied in materials in healthcare facilities, to inhibit the growth of bacteria capable of causing serious disease.
Collapse
Affiliation(s)
- Melissa V Werrett
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Megan E Herdman
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Rajini Brammananth
- Department of Microbiology, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Uthpala Garusinghe
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Warren Batchelor
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Paul K Crellin
- Department of Microbiology, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| |
Collapse
|
10
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
11
|
Tabrizi L, Chiniforoshan H, McArdle P. A novel one-dimensional manganese(II) coordination polymer containing both dicyanamide and pyrazinamide ligands: synthesis, spectroscopic investigations, X-ray studies and evaluation of biological activities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 139:307-312. [PMID: 25574649 DOI: 10.1016/j.saa.2014.12.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/06/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
A novel 1D coordination polymer {[Mn(μ1,5-dca)2(PZA)2](PZA)2}n, 1, has been synthesized and characterized by single crystal X-ray crystallography. The coordination mode of dicyanamide (dca) and pyrazinamide (PZA) ligands was inferred by IR spectroscopy. The compound 1 was evaluated for in vitro antimycobacterial and antitumor activities. It demonstrated better in vitro activity against Mycobacterium tuberculosis than pyrazinamide and its MIC value was determined. Complex 1 was also screened for its in vitro antitumor activity towards LM3 and LP07 murine cancer cell lines. In addition, the antibacterial activity of complex 1 has been tested against Gram(+) and Gram(-) bacteria and it has shown promising broad range anti-bacterial activity.
Collapse
Affiliation(s)
- Leila Tabrizi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Chiniforoshan
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Patrick McArdle
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
12
|
Chiniforoshan H, Radani ZS, Tabrizi L, Tavakol H, Sabzalian MR, Mohammadnezhad G, Görls H, Plass W. Pyrazinamide drug interacting with Co(III) and Zn(II) metal ions based on 2,2′-bipyridine and 1,10-phenanthroline ligands: Synthesis, studies and crystal structure, DFT calculations and antibacterial assays. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Correia I, Adão P, Roy S, Wahba M, Matos C, Maurya MR, Marques F, Pavan FR, Leite CQF, Avecilla F, Costa Pessoa J. Hydroxyquinoline derived vanadium(IV and V) and copper(II) complexes as potential anti-tuberculosis and anti-tumor agents. J Inorg Biochem 2014; 141:83-93. [PMID: 25226436 DOI: 10.1016/j.jinorgbio.2014.07.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022]
Abstract
Several mixed ligand vanadium and copper complexes were synthesized containing 8-hydroxyquinoline (8HQ) and a ligand such as picolinato (pic(-)), dipicolinato (dipic(2-)) or a Schiff base. The complexes were characterized by spectroscopic techniques and by single-crystal X-ray diffraction in the case of [V(V)O(L-pheolnaph-im)(5-Cl-8HQ)] and [V(V)O(OMe)(8HQ)2], which evidenced the distorted octahedral geometry of the complexes. The electronic absorption data showed the presence of strong ligand to metal charge transfer bands, significant solvent effects, and methoxido species in methanol, which was further confirmed by (51)V-NMR spectroscopy. The structures of [Cu(II)(dipic)(8HQ)]Na and [V(IV)O(pic)(8HQ)] were confirmed by EPR spectroscopy, showing only one species in solution. The biological activity of the compounds was assessed through the minimal inhibitory concentration (MIC) of the compounds against Mycobacterium tuberculosis (Mtb) and the cytotoxic activity against the cisplatin sensitive/resistant ovarian cells A2780/A2780cisR and the non-tumorigenic HEK cells (IC50 values). Almost all tested vanadium complexes were very active against Mtb and the MICs were comparable to, or better than, the MICs of drugs, such as streptomycin. The activity of the complexes against the A2780 cell line was dependent on incubation time presenting IC50 values in the 3-14 μM (at 48 h) range. In these conditions, the complexes were significantly (*P<0.05-**P<0.001) more active than cisplatin (22 μM), in the A2780 cells and even surpassing its activity in the cisplatin-resistant cells A2780cisR (2.4-8 μM vs. 75.4; **P<0.001). In the non-tumorigenic HEK cells poor selectivity toward cancer cells for most of the complexes was observed, as well as for cisplatin.
Collapse
Affiliation(s)
- Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Adão
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Somnath Roy
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Mohamed Wahba
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Inorganic Chemistry Dep., National Research Center, El Buhouth St., Dokki, Cairo, Egypt
| | - Cristina Matos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10,km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Fernando R Pavan
- Faculdade de Ciências Farmacêuticas, UNESP, C.P. 582, Araraquara, SP 14801-902, Brazil
| | - Clarice Q F Leite
- Faculdade de Ciências Farmacêuticas, UNESP, C.P. 582, Araraquara, SP 14801-902, Brazil
| | - Fernando Avecilla
- Departamento de Química Fundamental, Universidade da Coruña, Campus de A Zapateira, 15071 A Coruña, Spain
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
14
|
Synthesis, structure and catalytic activity of an oxo-bridged dinuclear oxovanadium complex of an isonicotinohydrazide ligand. TRANSIT METAL CHEM 2013. [DOI: 10.1007/s11243-012-9687-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Main-Group Medicinal Chemistry Including Li and Bi*. COMPREHENSIVE INORGANIC CHEMISTRY II 2013. [PMCID: PMC7152213 DOI: 10.1016/b978-0-08-097774-4.00338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Main-group element compounds were among the first developed in the modern era as pharmaceutical preparations for the treatment of a wide variety of human ailments; it is now recognized that many of these elements exist in traditional medicine of many societies, for example, arsenic. The use of main-group element compounds in contemporary medicine continues for the treatment of, for example, depression (Li), stomach ulcers (Bi), cancer (As and Ga), and leishmaniasis (Sb). Not surprisingly, new compounds of these elements, and other main-group elements, continue to be investigated for their potential use in new therapies. In this chapter, the use of main-group elements as therapeutic agents is outlined and also, where understood, comments on biological targets and mechanisms of action. Further, key advances in new potential applications of main-group element compounds in medicine are evaluated.
Collapse
|
16
|
Chen C, Sun Q, Ren DX, Zhang R, Bai FY, Xing YH, Shi Z. Bromoperoxidase mimic as catalysts for oxidative bromination—synthesis, structures and properties of the diversified oxidation state of vanadium(iii, iv and v) complexes with pincer N-heterocycle ligands. CrystEngComm 2013. [DOI: 10.1039/c3ce40410b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Hosseini Monfared H, Kheirabadi S, Asghari Lalami N, Mayer P. Dioxo- and oxovanadium(V) complexes of biomimetic hydrazone ONO and NNS donor ligands: Synthesis, crystal structure and catalytic reactivity. Polyhedron 2011. [DOI: 10.1016/j.poly.2011.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Flieger J, Paneth P, Giełzak-Koćwin K, Tatarczak M. Micropreparative isolation of Cu(II) complexes of isoniazid and ethambutol and determination of their structures. JPC-J PLANAR CHROMAT 2009. [DOI: 10.1556/jpc.22.2009.2.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
da S. Maia PI, Pavan FR, Leite CQ, Lemos SS, de Sousa GF, Batista AA, Nascimento OR, Ellena J, Castellano EE, Niquet E, Deflon VM. Vanadium complexes with thiosemicarbazones: Synthesis, characterization, crystal structures and anti-Mycobacterium tuberculosis activity. Polyhedron 2009. [DOI: 10.1016/j.poly.2008.11.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|