1
|
Yeager R, Heasley LR, Baker N, Shrivastava V, Woodman J, McMurray MA. Wild yeast isolation by middle-school students reveals features of populations residing on North American oaks. G3 (BETHESDA, MD.) 2025; 15:jkae270. [PMID: 39570886 PMCID: PMC11708222 DOI: 10.1093/g3journal/jkae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle-school students in Denver, CO, USA, to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. In contrast, we isolated the "dairy yeast," Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state. The outreach activity partnered middle-school, high-school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Collapse
Affiliation(s)
- Randi Yeager
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nolan Baker
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vatsal Shrivastava
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie Woodman
- Department of Biology, Colorado Christian University, Lakewood, CO 80226, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Yeager R, Heasley L, Baker N, Shrivastava V, Woodman J, McMurray M. Wild yeast isolation by middle school students reveals features of North American oak populations of Saccharomyces cerevisiae and Kluyveromyces lactis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601111. [PMID: 39005424 PMCID: PMC11244913 DOI: 10.1101/2024.06.27.601111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle school students in Denver, Colorado, USA to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. By contrast, we isolated the "dairy yeast", Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state, pointing to high genetic diversity. The outreach activity partnered middle school, high school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Collapse
Affiliation(s)
- Randi Yeager
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lydia Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Nolan Baker
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vatsal Shrivastava
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Woodman
- Department of Biology, Colorado Christian University, Lakewood, Colorado, USA
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16:e1008330. [PMID: 32324744 PMCID: PMC7200024 DOI: 10.1371/journal.pgen.1008330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
The tRNA isopentenyltransferases (IPTases), which add an isopentenyl group to N6 of A37 (i6A37) of certain tRNAs, are among a minority of enzymes that modify cytosolic and mitochondrial tRNAs. Pathogenic mutations to the human IPTase, TRIT1, that decrease i6A37 levels, cause mitochondrial insufficiency that leads to neurodevelopmental disease. We show that TRIT1 encodes an amino-terminal mitochondrial targeting sequence (MTS) that directs mitochondrial import and modification of mitochondrial-tRNAs. Full understanding of IPTase function must consider the tRNAs selected for modification, which vary among species, and in their cytosol and mitochondria. Selection is principally via recognition of the tRNA A36-A37-A38 sequence. An exception is unmodified tRNATrpCCA-A37-A38 in Saccharomyces cerevisiae, whereas tRNATrpCCA is readily modified in Schizosaccharomyces pombe, indicating variable IPTase recognition systems and suggesting that additional exceptions may account for some of the tRNA-i6A37 paucity in higher eukaryotes. Yet TRIT1 had not been characterized for restrictive type substrate-specific recognition. We used i6A37-dependent tRNA-mediated suppression and i6A37-sensitive northern blotting to examine IPTase activities in S. pombe and S. cerevisiae lacking endogenous IPTases on a diversity of tRNA-A36-A37-A38 substrates. Point mutations to the TRIT1 MTS that decrease human mitochondrial import, decrease modification of mitochondrial but not cytosolic tRNAs in both yeasts. TRIT1 exhibits clear substrate-specific restriction against a cytosolic-tRNATrpCCA-A37-A38. Additional data suggest that position 32 of tRNATrpCCA is a conditional determinant for substrate-specific i6A37 modification by the restrictive IPTases, Mod5 and TRIT1. The cumulative biochemical and phylogenetic sequence analyses provide new insights into IPTase activities and determinants of tRNA-i6A37 profiles in cytosol and mitochondria.
Collapse
Affiliation(s)
- Abdul Khalique
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandy Mattijssen
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Haddad
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
- Commissioned Corps, United States Public Health Service, Rockville, Maryland, United States of America
| |
Collapse
|
4
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
5
|
Complete Genome Sequence of Kluyveromyces lactis Strain GG799, a Common Yeast Host for Heterologous Protein Expression. GENOME ANNOUNCEMENTS 2017; 5:5/30/e00623-17. [PMID: 28751387 PMCID: PMC5532825 DOI: 10.1128/genomea.00623-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the genome sequence of the dairy yeast Kluyveromyces lactis strain GG799 obtained using the Pacific Biosciences RS II platform. K. lactis strain GG799 is a common host for the expression of proteins at both laboratory and industrial scales.
Collapse
|
6
|
Kito K, Ito H, Nohara T, Ohnishi M, Ishibashi Y, Takeda D. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication. Mol Cell Proteomics 2015; 15:218-35. [PMID: 26560065 DOI: 10.1074/mcp.m115.051854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 11/06/2022] Open
Abstract
Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under nonoptimal culture conditions but also provide valuable insights into intriguing biological principles, including the balance of proteome resource allocation and the role of gene duplication in evolutionary history.
Collapse
Affiliation(s)
- Keiji Kito
- From the ‡Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Haruka Ito
- From the ‡Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Takehiro Nohara
- From the ‡Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Mihoko Ohnishi
- From the ‡Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Yuko Ishibashi
- From the ‡Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Daisuke Takeda
- From the ‡Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| |
Collapse
|
7
|
Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldón T. High variability of mitochondrial gene order among fungi. Genome Biol Evol 2015; 6:451-65. [PMID: 24504088 PMCID: PMC3942027 DOI: 10.1093/gbe/evu028] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
From their origin as an early alpha proteobacterial endosymbiont to their current state as cellular organelles, large-scale genomic reorganization has taken place in the mitochondria of all main eukaryotic lineages. So far, most studies have focused on plant and animal mitochondrial (mt) genomes (mtDNA), but fungi provide new opportunities to study highly differentiated mtDNAs. Here, we analyzed 38 complete fungal mt genomes to investigate the evolution of mtDNA gene order among fungi. In particular, we looked for evidence of nonhomologous intrachromosomal recombination and investigated the dynamics of gene rearrangements. We investigated the effect that introns, intronic open reading frames (ORFs), and repeats may have on gene order. Additionally, we asked whether the distribution of transfer RNAs (tRNAs) evolves independently to that of mt protein-coding genes. We found that fungal mt genomes display remarkable variation between and within the major fungal phyla in terms of gene order, genome size, composition of intergenic regions, and presence of repeats, introns, and associated ORFs. Our results support previous evidence for the presence of mt recombination in all fungal phyla, a process conspicuously lacking in most Metazoa. Overall, the patterns of rearrangements may be explained by the combined influences of recombination (i.e., most likely nonhomologous and intrachromosomal), accumulated repeats, especially at intergenic regions, and to a lesser extent, mobile element dynamics.
Collapse
Affiliation(s)
- Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Lipinski KA, Puchta O, Surendranath V, Kudla M, Golik P. Revisiting the yeast PPR proteins--application of an Iterative Hidden Markov Model algorithm reveals new members of the rapidly evolving family. Mol Biol Evol 2011; 28:2935-48. [PMID: 21546354 DOI: 10.1093/molbev/msr120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are the largest known RNA-binding protein family, and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly to mitochondria and chloroplasts, and many were shown to modulate organellar genome expression on the posttranscriptional level. Although the genomes of land plants encode hundreds of PPR proteins, only a few have been identified in Fungi and Metazoa. As the current PPR motif profiles are built mainly on the basis of the predominant plant sequences, they are unlikely to be optimal for detecting fungal and animal members of the family, and many putative PPR proteins in these genomes may remain undetected. In order to verify this hypothesis, we designed a hidden Markov model-based bioinformatic tool called Supervised Clustering-based Iterative Phylogenetic Hidden Markov Model algorithm for the Evaluation of tandem Repeat motif families (SCIPHER) using sequence data from orthologous clusters from available yeast genomes. This approach allowed us to assign 12 new proteins in Saccharomyces cerevisiae to the PPR family. Similarly, in other yeast species, we obtained a 5-fold increase in the detection of PPR motifs, compared with the previous tools. All the newly identified S. cerevisiae PPR proteins localize in the mitochondrion and are a part of the RNA processing interaction network. Furthermore, the yeast PPR proteins seem to undergo an accelerated divergent evolution. Analysis of single and double amino acid substitutions in the Dmr1 protein of S. cerevisiae suggests that cooperative interactions between motifs and pseudoreversion could be the force driving this rapid evolution.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
9
|
Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 2011; 39:4202-19. [PMID: 21266473 PMCID: PMC3105423 DOI: 10.1093/nar/gkq1345] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Comenius University, Mlynska dolina CH-1, 842 15 Bratislava, Slovak republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Solieri L. Mitochondrial inheritance in budding yeasts: towards an integrated understanding. Trends Microbiol 2010; 18:521-30. [PMID: 20832322 DOI: 10.1016/j.tim.2010.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/23/2010] [Accepted: 08/04/2010] [Indexed: 01/08/2023]
Abstract
Recent advances in yeast mitogenomics have significantly contributed to our understanding of the diversity of organization, structure and topology in the mitochondrial genome of budding yeasts. In parallel, new insights on mitochondrial DNA (mtDNA) inheritance in the model organism Saccharomyces cerevisiae highlighted an integrated scenario where recombination, replication and segregation of mtDNA are intricately linked to mitochondrial nucleoid (mt-nucleoid) structure and organelle sorting. In addition to this, recent discoveries of bifunctional roles of some mitochondrial proteins have interesting implications on mito-nuclear genome interactions and the relationship between mtDNA inheritance, yeast fitness and speciation. This review summarizes the current knowledge on yeast mitogenomics, mtDNA inheritance with regard to mt-nucleoid structure and organelle dynamics, and mito-nuclear genome interactions.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Agricultural and Food Sciences, University of Modena and Reggio Emilia, via Amendola 2, Padiglione Besta, 42100 Reggio Emilia, Italy.
| |
Collapse
|
11
|
Procházka E, Poláková S, Piskur J, Sulo P. Mitochondrial genome from the facultative anaerobe and petite-positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes. FEMS Yeast Res 2010; 10:545-57. [PMID: 20528950 DOI: 10.1111/j.1567-1364.2010.00644.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The progenitor of the Dekkera/Brettanomyces clade separated from the Saccharomyces/Kluyveromyces clade over 200 million years ago. However, within both clades, several lineages developed similar physiological traits. Both Saccharomyces cerevisiae and Dekkera bruxellensis are facultative anaerobes; in the presence of excess oxygen and sugars, they accumulate ethanol (Crabtree effect) and they both spontaneously generate respiratory-deficient mutants (petites). In order to understand the role of respiratory metabolism, the mitochondrial DNA (mtDNA) molecules of two Dekkera/Brettanomyces species were analysed. Dekkera bruxellensis mtDNA shares several properties with S. cerevisiae, such as the large genome size (76 453 bp), and the organization of the intergenic sequences consisting of spacious AT-rich regions containing a number of hairpin GC-rich cluster-like elements. In addition to a basic set of the mitochondrial genes coding for the components of cytochrome oxidase, cytochrome b, subunits of ATPase, two rRNA subunits and 25 tRNAs, D. bruxellensis also carries genes for the NADH dehydrogenase complex. Apparently, in yeast, the loss of this complex is not a precondition to develop a petite-positive, Crabtree-positive and anaerobic nature. On the other hand, mtDNA from a petite-negative Brettanomyces custersianus is much smaller (30 058 bp); it contains a similar gene set and has only short intergenic sequences.
Collapse
Affiliation(s)
- Emanuel Procházka
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
12
|
Cha M, Kim EJ, Park J, Kim J, Kim BG. Enantioselective synthesis of ethyl-(S)-3-hydroxy-3-phenylpropanoate (S-HPPE) from ethyl-3-oxo-3-phenylpropanoate using recombinant fatty acid synthase (FAS2) from Kluyveromyces lactis KCTC 7133 in Pichia pastoris GS115. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109kb in size and contains a stable integrated plasmid. ACTA ACUST UNITED AC 2008; 112:1136-52. [DOI: 10.1016/j.mycres.2008.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 03/19/2008] [Accepted: 04/24/2008] [Indexed: 11/17/2022]
|
14
|
Massey SE, Garey JR. A comparative genomics analysis of codon reassignments reveals a link with mitochondrial proteome size and a mechanism of genetic code change via suppressor tRNAs. J Mol Evol 2007; 64:399-410. [PMID: 17390094 DOI: 10.1007/s00239-005-0260-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Using a comparative genomics approach we demonstrate a negative correlation between the number of codon reassignments undergone by 222 mitochondrial genomes and the mitochondrial genome size, the number of mitochondrial ORFs, and the sizes of the large and small subunit mitochondrial rRNAs. In addition, we show that the TGA-to-tryptophan codon reassignment, which has occurred 11 times in mitochondrial genomes, is found in mitochondrial genomes smaller than those which have not undergone the reassignment. We therefore propose that mitochondrial codon reassignments occur in a wide range of phyla, particularly in Metazoa, due to a reduced "proteomic constraint" on the mitochondrial genetic code, compared to the nuclear genetic code. The reduced proteomic constraint reflects the small size of the mitochondrial-encoded proteome and allows codon reassignments to occur with less likelihood of lethality. In addition, we demonstrate a striking link between nonsense codon reassignments and the decoding properties of naturally occurring nonsense suppressor tRNAs. This suggests that natural preexisting nonsense suppression facilitated nonsense codon reassignments and constitutes a novel mechanism of genetic code change. These findings explain for the first time the identity of the stop codons and amino acids reassigned in mitochondrial and nuclear genomes. Nonsense suppressor tRNAs provided the raw material for nonsense codon reassignments, implying that the properties of the tRNA anticodon have dictated the identity of nonsense codon reassignments.
Collapse
Affiliation(s)
- Steven E Massey
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | | |
Collapse
|
15
|
Nosek J, Tomaska L, Bolotin-Fukuhara M, Miyakawa I. Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes. FEMS Yeast Res 2005. [DOI: 10.1111/j.1574-1364.2005.00016.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Current awareness on yeast. Yeast 2005; 22:919-26. [PMID: 16201058 DOI: 10.1002/yea.1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|