1
|
Tanaka K, Subramaniam S, Atluri S, Amoako AA, Mortlock S, Montgomery GW, McKinnon B. Endometrial Cell-Type Specific Regulation of the Endocannabinoids System and the Impact of Menstrual Cycle and Endometriosis. Cannabis Cannabinoid Res 2024. [PMID: 39286880 DOI: 10.1089/can.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Introduction: Anandamide (AEA) and 2-arachidonoylglycerol are endogenous agonists of the cannabinoid receptors and regulate and control many cellular functions. Their activities are governed by enzymes and proteins that regulate their synthesis, receptor binding, transport, and degradation, which are known as the endocannabinoid system (ECS). The aim of this study was to investigate the regulation of endocannabinoid activity in the endometrium by studying the RNA and protein expression of the ECS within endometrial cell types and during different menstrual cycle stages and the impact of endometriosis. Materials and Methods: The RNA expression of 70 ECS genes was assessed using RNA sequencing of isolated endometrial epithelial and stromal cells. Subsequent immunofluorescence-stained endometrial samples on ECS components of interest were objectively analyzed via an agnostic and automated image analysis pipeline to extract quantitative information. Differential gene and protein expression was investigated between the two cell types, menstrual cycle phases, and endometriosis cases and controls. Results: Sufficient RNA expression was detected for 45 genes, and 17 (38%) genes were significantly different between epithelial and stromal cells. FAAH RNA was significantly higher in epithelial cells compared with stromal cells. Protein expression analysis of the main synthesizing (NAPE-PLD) and catabolizing (FAAH and NAAA) enzymes of AEA revealed a significantly stronger epithelial expression compared to stromal cells. The RNA and protein expression of CB1 receptors was very low with no significant difference between epithelial and stromal cells. Eleven ECS genes were regulated across the menstrual cycle, and there was no gene with significant difference between endometriosis cases and controls in epithelial cells. Discussion: Differential expression of ECS genes supports a cell type-specific endocannabinoid activity in the endometrium. As endocannabinoids are short-lived signaling molecules, higher RNA and protein expression of FAAH in the epithelial cells suggests an active regulation of endocannabinoid activity in epithelial cells within the endometrium.
Collapse
Affiliation(s)
- Keisuke Tanaka
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | | | - Sharat Atluri
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Akwasi A Amoako
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Sally Mortlock
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Brett McKinnon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Department of Biomedical Research, University of Berne, Berne, Switzerland
| |
Collapse
|
2
|
Cano-Herrera G, Salmun Nehmad S, Ruiz de Chávez Gascón J, Méndez Vionet A, van Tienhoven XA, Osorio Martínez MF, Muleiro Alvarez M, Vasco Rivero MX, López Torres MF, Barroso Valverde MJ, Noemi Torres I, Cruz Olascoaga A, Bautista Gonzalez MF, Sarkis Nehme JA, Vélez Rodríguez I, Murguiondo Pérez R, Salazar FE, Sierra Bronzon AG, Rivera Rosas EG, Carbajal Ocampo D, Cabrera Carranco R. Endometriosis: A Comprehensive Analysis of the Pathophysiology, Treatment, and Nutritional Aspects, and Its Repercussions on the Quality of Life of Patients. Biomedicines 2024; 12:1476. [PMID: 39062050 PMCID: PMC11274817 DOI: 10.3390/biomedicines12071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Endometriosis is a chronic proinflammatory pathology characterized by the growth of tissue similar to the endometrium outside the uterus, affecting approximately 5 to 15% of women worldwide. Suffering from endometriosis entails a complex pathophysiological process, significantly impacting the quality of life and reproductive function of affected women; therefore, it must be addressed in a personalized and comprehensive manner, as its management requires a multidisciplinary approach. This article aims to conduct a comprehensive literature review of endometriosis, not only as a pathophysiological condition but also as a significant factor impacting the social, nutritional, and mental well-being of those who experience it. Emphasis is placed on the importance of understanding and assessing the impact of the pathology to provide a better and more comprehensive approach, integrating various alternatives and strategic treatments for the factors involved in its development. The aim is to provide a complete overview of endometriosis, from its pathophysiology to its impact on the quality of life of patients, as well as a review of current treatment options, both pharmacological and alternative, in order to broaden the perspective on the pathology to improve the care of patients with this disease.
Collapse
Affiliation(s)
- Gabriela Cano-Herrera
- Escuela de Ciencias de la Salud, Universidad Anáhuac Puebla, 72810 San Andrés Cholula, Mexico;
| | - Sylvia Salmun Nehmad
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - Jimena Ruiz de Chávez Gascón
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - Amairani Méndez Vionet
- Facultad de Ciencias de la Salud, Universidad Panamericana, 03920 Ciudad de México, Mexico
| | - Ximena A. van Tienhoven
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - María Fernanda Osorio Martínez
- División de Ciencias Biológicas y de la Salud, Unidad Xochimilco, Universidad Autónoma Metropolitana, 04960 Ciudad de México, Mexico
| | - Mauricio Muleiro Alvarez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Mariana Ximena Vasco Rivero
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - María Fernanda López Torres
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - María Jimena Barroso Valverde
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - Isabel Noemi Torres
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - Alexa Cruz Olascoaga
- División de Ciencias Biológicas y de la Salud, Unidad Xochimilco, Universidad Autónoma Metropolitana, 04960 Ciudad de México, Mexico
| | - Maria Fernanda Bautista Gonzalez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - José Antonio Sarkis Nehme
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | | | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Ana Gabriela Sierra Bronzon
- Departamento de Cirugía Ginecológica de Mínima Invasión, Instituto Pélvico Neurovascular, 76807 San Juan del Río, Mexico
| | - Eder Gabriel Rivera Rosas
- Departamento en Cirugía Pélvica, Doyenne High Quality and Multidisciplinary Treatment Center for Endometriosis, 06700 Ciudad de México, Mexico
| | - Dante Carbajal Ocampo
- Departamento en Cirugía Pélvica, Doyenne High Quality and Multidisciplinary Treatment Center for Endometriosis, 06700 Ciudad de México, Mexico
| | - Ramiro Cabrera Carranco
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, 52786 Naucalpan de Juárez, Mexico
- Departamento en Cirugía Pélvica, Doyenne High Quality and Multidisciplinary Treatment Center for Endometriosis, 06700 Ciudad de México, Mexico
| |
Collapse
|
3
|
Lingegowda H, Williams BJ, Spiess KG, Sisnett DJ, Lomax AE, Koti M, Tayade C. Role of the endocannabinoid system in the pathophysiology of endometriosis and therapeutic implications. J Cannabis Res 2022; 4:54. [PMID: 36207747 PMCID: PMC9540712 DOI: 10.1186/s42238-022-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Endometriosis patients experience debilitating chronic pain, and the first-line treatment is ineffective at managing symptoms. Although surgical removal of the lesions provides temporary relief, more than 50% of the patients experience disease recurrence. Despite being a leading cause of hysterectomy, endometriosis lacks satisfactory treatments and a cure. Another challenge is the poor understanding of disease pathophysiology which adds to the delays in diagnosis and overall compromised quality of life. Endometriosis patients are in dire need of an effective therapeutic strategy that is both economical and effective in managing symptoms, while fertility is unaffected. Endocannabinoids and phytocannabinoids possess anti-inflammatory, anti-nociceptive, and anti-proliferative properties that may prove beneficial for endometriosis management, given that inflammation, vascularization, and pain are hallmark features of endometriosis. Endocannabinoids are a complex network of molecules that play a central role in physiological processes including homeostasis and tissue repair, but endocannabinoids have also been associated in the pathophysiology of several chronic inflammatory diseases including endometriosis and cancers. The lack of satisfactory treatment options combined with the recent legalization of recreational cannabinoids in some parts of the world has led to a rise in self-management strategies including the use of cannabinoids for endometriosis-related pain and other symptoms. In this review, we provide a comprehensive overview of endocannabinoids with a focus on their potential roles in the pathophysiology of endometriosis. We further provide evidence-driven perspectives on the current state of knowledge on endometriosis-associated pain, inflammation, and therapeutic avenues exploiting the endocannabinoid system for its management.
Collapse
Affiliation(s)
- Harshavardhan Lingegowda
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Bailey J Williams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Katherine G Spiess
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Danielle J Sisnett
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
- Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, ON, Canada
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
4
|
Gene expression of the endocannabinoid system in endometrium through menstrual cycle. Sci Rep 2022; 12:9400. [PMID: 35672435 PMCID: PMC9174470 DOI: 10.1038/s41598-022-13488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Endocannabinoids mediate cellular functions and their activity is controlled by a complex system of enzymes, membrane receptors and transport molecules. Endocannabinoids are present in endometrium, a cyclical regenerative tissue requiring tightly regulated cellular mechanisms for maturation. The objective of this study was to investigate the gene expression of key elements involved in the endocannabinoid system across the menstrual cycle. RNA was isolated from endometrial tissue and genome-wide gene expression datasets were generated using RNA-sequencing. An a priori set of 70 genes associated with endocannabinoid system were selected from published literature. Gene expression across the menstrual cycle was analyzed using a moderated t test, corrected for multiple testing with Bonferroni’s method. A total of 40 of the 70 genes were present in > 90% of the samples, and significant differential gene expression identified for 29 genes. We identified 4 distinct regulation patterns for synthesizing enzymes, as well as a distinct regulation pattern for degradations and transporting enzymes. This study charts the expression of endometrial endocannabinoid system genes across the menstrual cycle. Altered expression of genes that control endocannabinoid may allow fine control over endocannabinoid concentrations and their influence on cellular function, maturation and differentiation as the endometrium matures through the menstrual cycle.
Collapse
|
5
|
Detection of Cannabinoid Receptor Expression by Endometriotic Lesions in Women with Endometriosis as an Alternative to Opioid-Based Pain Medication. J Immunol Res 2022; 2022:4323259. [PMID: 35692500 PMCID: PMC9184153 DOI: 10.1155/2022/4323259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging information suggests a potential role of medicinal cannabis in pain medication in addition to enhancing immune functions. Endometriosis is a disease of women of reproductive age associated with infertility and reproductive failure as well as chronic pain of varying degrees depending on the stage of the disease. Currently, opioids are being preferred over nonsteroidal anti-inflammatory drugs (NSAID) due to the latter’s side effects. However, as the opioids are becoming a source of addiction, additional pain medication is urgently needed. Cannabis offers an alternative therapy for treating the pain associated with endometriosis. Information on the use and effectiveness of cannabis against endometriotic pain is lacking. Moreover, expression of receptors for endocannabinoids by the ovarian endometriotic lesions is not known. The goal of this study was to examine whether cannabinoid receptors 1 and 2 (CB1 and CB2) are expressed by ovarian endometriotic lesions. Archived normal ovarian tissues, ovaries with endometriotic lesions, and normal endometrial tissues were examined for the presence of endometrial stromal cells using CD10 (a marker of endometrial stromal cells). Expression of CB1 and CB2 were determined by immunohistochemistry, immunoblotting, and gene expression studies. Intense expression for CB1 and CB2 was detected in the epithelial cells in ovarian endometriotic lesions. Compared with stroma in ovaries with endometriotic lesions, the expression of CB1 and CB2 was significantly higher in the epithelial cells in endometriotic lesions in the ovary (
and
, respectively). Immunoblotting and gene expression assays showed similar patterns for CB1 and CB2 protein and CNR1 (gene encoding CB1) and CNR2 (gene encoding CB2) gene expression. These results suggest that ovarian endometriotic lesions express CB1 and CB2 receptors, and these lesions may respond to cannabinoids as pain medication. These results will form a foundation for a clinical study with larger cohorts.
Collapse
|
6
|
Załęcka J, Pankiewicz K, Issat T, Laudański P. Molecular Mechanisms Underlying the Association between Endometriosis and Ectopic Pregnancy. Int J Mol Sci 2022; 23:ijms23073490. [PMID: 35408850 PMCID: PMC8998627 DOI: 10.3390/ijms23073490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Endometriosis is a common inflammatory disease characterized by the presence of endometrial cells outside the uterine cavity. It is estimated that it affects 10% of women of reproductive age. Its pathogenesis covers a wide range of abnormalities, including adhesion, proliferation, and cell signaling disturbances. It is associated with a significant deterioration in quality of life as a result of chronic pelvic pain and may also lead to infertility. One of the most serious complications of endometriosis is an ectopic pregnancy (EP). Currently, the exact mechanism explaining this phenomenon is unknown; therefore, there are no effective methods of prevention. It is assumed that the pathogenesis of EP is influenced by abnormalities in the contraction of the fallopian tube muscles, the mobility of the cilia, and in the fallopian microenvironment. Endometriosis can disrupt function on all three levels and thus contribute to the implantation of the embryo beyond the physiological site. This review takes into account aspects of the molecular mechanisms involved in the pathophysiology of endometriosis and EP, with particular emphasis on the similarities between them.
Collapse
Affiliation(s)
- Julia Załęcka
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland;
| | - Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (K.P.); (T.I.)
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (K.P.); (T.I.)
| | - Piotr Laudański
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland;
- OVIklinika Infertility Center, Połczyńska 31, 01-377 Warsaw, Poland
- Correspondence:
| |
Collapse
|
7
|
Mistry M, Simpson P, Morris E, Fritz AK, Karavadra B, Lennox C, Prosser-Snelling E. Cannabidiol for the Management of Endometriosis and Chronic Pelvic Pain. J Minim Invasive Gynecol 2021; 29:169-176. [PMID: 34839061 DOI: 10.1016/j.jmig.2021.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To review the available literature on the effect of cannabis-based products on the female reproductive system and establish if there is any evidence that they benefit or harm patients with endometriosis and therefore if there is sufficient evidence to recommend them. DATA SOURCES An electronic-based search was performed in PubMed, Embase and the Cochrane Database. Reference lists of articles retrieved were reviewed and a grey literature search was also performed. METHODS OF STUDY SELECTION The original database search yielded 264 articles from PubMed, Embase and the Cochrane Database, of which forty-one were included. One hundred and sixty-one studies relating to gynaecological malignancy, conditions unrelated to endometriosis or therapies unrelated to cannabis-based products were excluded. Twelve articles were included from a grey literature search and review of references. RESULTS The majority of available evidence is from laboratory studies aiming to simulate the effects of cannabis-based products on preclinical endometriosis models. Some show evidence of benefit with cannabis-based products. However, results are conflicting and the impact in humans cannot necessarily be extrapolated from this data. Few studies exist looking at the effect of cannabis or its derived products in women with endometriosis - the majority are in the form of surveys and are affected by bias. National guidance was also reviewed: at present this dictates that cannabis-based products can only be prescribed for conditions where there is clear published evidence of benefit and only when all other treatment options have been exhausted. CONCLUSION Current treatment options for endometriosis often affect fertility and/or have undesirable side effects that impede long-term management. Cannabis-based products have been suggested as a novel therapeutic option that may circumvent these issues. However, there is a paucity of well-designed, robust studies and randomised controlled trials looking at their use in the treatment of endometriosis. In addition, cannabis use has a potential for harm in the long term; with a possible association with 'cannabis use disorder', psychosis and mood disturbances. At present, national guidance cannot recommend cannabis-based products to patients in the UK due to lack of clear evidence of benefit. More comprehensive research into the impact of endocannabinoids in the context of endometriosis is required before their use can be recommended or prescribed.
Collapse
Affiliation(s)
- Megha Mistry
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital, NR4 7UY, UK
| | - Paul Simpson
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital, NR4 7UY, UK.
| | - Edward Morris
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital, NR4 7UY, UK
| | - Ann-Katrin Fritz
- Department of Anaesthesia and Pain Management, Norfolk and Norwich University Hospital, NR4 7UY, UK
| | - Babu Karavadra
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital, NR4 7UY, UK
| | - Carole Lennox
- Department of Anaesthesia, Queen's Hospital, Rom Valley Way, Romford, RM7 0AG, UK
| | - Ed Prosser-Snelling
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital, NR4 7UY, UK
| |
Collapse
|
8
|
Lingegowda H, Miller JE, McCallion A, Childs T, Lessey BA, Koti M, Tayade C. Implications of dysregulated endogenous cannabinoid family members in the pathophysiology of endometriosis. F&S SCIENCE 2021; 2:419-430. [PMID: 35559864 DOI: 10.1016/j.xfss.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine the involvement of the endocannabinoid (EC) family member in the pathophysiology of endometriosis (EMS). DESIGN Mass spectrometry analysis of plasma and tissue samples from patients with EMS, controls, and a mouse model of EMS and messenger RNA and immunohistochemistry analysis of the samples from patients with EMS and controls. SETTING Academic teaching hospital and university. PATIENT(S) Patients with EMS and healthy fertile control subjects. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Endocannabinoid analysis in patient plasma, EMS lesions, and healthy endometrial samples. RESULT(S) Circulating ECs were detected in the plasma samples, whereas no significant changes were observed in patients with EMS compared with healthy fertile controls. However, the palmitoylethanolamide levels were significantly higher in the EMS lesions than in the endometrium from patients with EMS. Similarly, genes involved in the EC signaling pathways were differentially expressed in the EMS lesions. Analysis of cannabinoid 1 and 2 receptors in the EMS lesions revealed a significantly lower cannabinoid 2 receptor expression, whereas no significant changes were observed in cannabinoid 1 receptor expression compared with those in the endometrium from both patients with EMS and healthy fertile controls. The palmitoylethanolamide levels were significantly elevated in plasma from EMS mice compared with that from sham controls and in EMS lesions compared with uterine samples. CONCLUSION(S) Together, we provide evidence toward dysregulation of members of the ECs in both patients with EMS and the mouse model of EMS. These findings will advance the knowledge of the role of ECs in EMS and their potential implications as therapeutic targets.
Collapse
Affiliation(s)
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alison McCallion
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Timothy Childs
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Obstetrics and Gynecology, Kingston Health Sciences Center, Kingston, Ontario, Canada; Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
9
|
N-Acyl Dopamines Induce Apoptosis in Endometrial Stromal Cells from Patients with Endometriosis. Int J Mol Sci 2021; 22:ijms221910648. [PMID: 34638988 PMCID: PMC8509064 DOI: 10.3390/ijms221910648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 01/13/2023] Open
Abstract
Endometriosis is characterized by the formation and development of endometrial tissues outside the uterus, based on an imbalance between proliferation and cell death, leading to the uncontrolled growth of ectopic foci. The potential target for the regulation of these processes is the endocannabinoid system, which was found to be involved in the migration, proliferation, and survival of tumor cells. In this paper, we investigated the effect of endocannabinoid-like compounds from the N-acyl dopamine (NADA) family on the viability of stromal cells from ectopic and eutopic endometrium of patients with ovarian endometriosis. N-arachidonoyldopamine, N-docosahexaenoyldopamine, and N-oleoyldopamine have been shown to have a five-times-more-selective cytotoxic effect on endometrioid stromal cells. To study the mechanisms of the toxic effect, inhibitory analysis, measurements of caspase-3/9 activity, reactive oxygen species, and the mitochondrial membrane potential were performed. It was found that NADA induced apoptosis via an intrinsic pathway through the CB1 receptor and downstream serine palmitoyltransferase, NO synthase activation, increased ROS production, and mitochondrial dysfunction. The higher selectivity of NADA for endometriotic stromal cells and the current lack of effective drug treatment can be considered positive factors for further research of these compounds as possible therapeutic agents against endometriosis.
Collapse
|
10
|
Cannabinoids and chronic pelvic pain in women: Focus on endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2021. [DOI: 10.1177/22840265211011277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic pelvic pain in women is common and frequently difficult to treat. Chronic pelvic pain often develops in the setting of endometriosis, interstitial cystitis/bladder pain syndrome, and vulvodynia. Cannabinoids are a promising treatment modality for non-cancer chronic pain, but have not been studied in women with chronic pelvic pain nor in specific chronic pelvic pain conditions. This review focuses on the interaction of the endocannabinoid system with the menstrual cycles, with endometriotic lesions, and within the bladder. Furthermore, it provides a brief overview of existing literature of the effects of endocannabinoids on chronic pain generally, with a focus on neuropathic pain. Finally, it discusses limited data available regarding the use of cannabinoids in women with chronic pelvic pain conditions. In the opinion of the authors, cannabinoids are a reasonable treatment modality for refractory chronic pelvic pain, especially if a neuropathic component is suspected. Practitioners should expect a modest effect on pain levels with an acceptable safety profile.
Collapse
|
11
|
Matta K, Koual M, Ploteau S, Coumoul X, Audouze K, Le Bizec B, Antignac JP, Cano-Sancho G. Associations between Exposure to Organochlorine Chemicals and Endometriosis: A Systematic Review of Experimental Studies and Integration of Epidemiological Evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:76003. [PMID: 34310196 PMCID: PMC8312885 DOI: 10.1289/ehp8421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/04/2021] [Accepted: 06/21/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Growing epidemiological evidence suggests that organochlorine chemicals (OCCs), including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may play a role in the pathogenesis of endometriosis. OBJECTIVES We aimed to systematically review the experimental evidence (in vivo and in vitro) on the associations between exposure to OCCs and endometriosis-related end points. METHODS A systematic review protocol was developed following the National Toxicology Program /Office of Health Assessment and Translation (NTP/OHAT) framework and managed within a web-based interface. In vivo studies designed to evaluate the impact of OCCs on the onset or progression of endometriosis and proliferation of induced endometriotic lesions were eligible. Eligible in vitro studies included single-cell and co-culture models to evaluate the proliferation, migration, and/or invasion of endometrial cells. We applied the search strings to PubMed, Web of Science, and Scopus®. A final search was performed on 24 June 2020. Assessment of risk of bias and the level of evidence and integration of preevaluated epidemiological evidence was conducted using NTP/OHAT framework Results: Out of 812 total studies, 39 met the predetermined eligibility criteria (15 in vivo, 23 in vitro, and 1 both). Most studies (n=27) tested TCDD and other dioxin-like chemicals. In vivo evidence supported TCDD's promotion of endometriosis onset and lesion growth. In vitro evidence supported TCDD's promotion of cell migration and invasion, but there was insufficient evidence for cell proliferation. In vitro evidence further supported the roles of the aryl hydrocarbon receptor and matrix metalloproteinases in mediating steroidogenic disruption and inflammatory responses. Estrogen interactions were found across studies and end points. CONCLUSION Based on the integration of a high level of animal evidence with a moderate level of epidemiological evidence, we concluded that TCDD was a known hazard for endometriosis in humans and the conclusion is supported by mechanistic in vitro evidence. Nonetheless, there is need for further research to fill in our gaps in understanding of the relationship between OCCs and their mixtures and endometriosis, beyond the prototypical TCDD. https://doi.org/10.1289/EHP8421.
Collapse
Affiliation(s)
- Komodo Matta
- Oniris, INRAE, UMR 1329 Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Meriem Koual
- Université de Paris, T3S, Institut national de la santé et de la recherche médicale (Inserm) UMR S-1124, Paris, France
- Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Stéphane Ploteau
- Service de gynécologie-obstétrique, Centre d’investigation clinique–Femme Enfant Adolescent, Hôpital Mère Enfant, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Xavier Coumoul
- Université de Paris, T3S, Institut national de la santé et de la recherche médicale (Inserm) UMR S-1124, Paris, France
| | - Karine Audouze
- Université de Paris, T3S, Institut national de la santé et de la recherche médicale (Inserm) UMR S-1124, Paris, France
| | - Bruno Le Bizec
- Oniris, INRAE, UMR 1329 Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Jean-Philippe Antignac
- Oniris, INRAE, UMR 1329 Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - German Cano-Sancho
- Oniris, INRAE, UMR 1329 Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| |
Collapse
|
12
|
Cannabis and Cannabinoids in Reproduction and Fertility: Where We Stand. Reprod Sci 2021; 29:2429-2439. [PMID: 33970442 DOI: 10.1007/s43032-021-00588-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022]
Abstract
Although cannabis use is increasing in general population, their prevalence among young adults is remarkably high. In recent years, their medical use gained a renewed interest. However, it can underline the reputation of cannabis being a harmless drug. Between cannabinoids, uniquely found on the cannabis plant, Δ9-tetrahydrocannabinol (THC) is the well-studied compound. It is responsible for the psychoactive effects via central cannabinoid receptors. Nevertheless, cannabinoids interact with other chemical signalling systems such as the hypothalamic-pituitary-gonadal axis. THC indirectly decreases gonadotropin-releasing hormone (GnRH) secretion by the hypothalamus. The consequences are diverse, and several key hormones are affected. THC disturbs important reproductive events like folliculogenesis, ovulation and sperm maturation and function. Although generally accepted that cannabinoid consumption impacts male and female fertility, prevailing evidence remains largely on pre-clinical studies. Here, we introduce cannabinoids and the endocannabinoid system, and we review the most prominent clinical evidence about cannabis consumption in reproductive potential and teratogenicity.
Collapse
|
13
|
Ben Maamar M, Nilsson E, Thorson JLM, Beck D, Skinner MK. Transgenerational disease specific epigenetic sperm biomarkers after ancestral exposure to dioxin. ENVIRONMENTAL RESEARCH 2021; 192:110279. [PMID: 33039529 PMCID: PMC8130889 DOI: 10.1016/j.envres.2020.110279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 05/15/2023]
Abstract
Dioxin was historically one of the most common industrial contaminants with several major industry accidents, as well as governmental actions involving military service, having exposed large numbers of the worldwide population over the past century. Previous rat studies have demonstrated the ability of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) exposure to promote the epigenetic transgenerational inheritance of disease susceptibility in subsequent generations. The types of disease previously observed include puberty abnormalities, testis, ovary, kidney, prostate and obesity pathologies. The current study was designed to use an epigenome-wide association study (EWAS) to identify potential sperm DNA methylation biomarkers for specific transgenerational diseases. Therefore, the transgenerational F3 generation dioxin lineage male rats with and without a specific disease were compared to identify differential DNA methylation regions (DMRs) as biomarkers for disease. The genomic features of the disease-specific DMRs were characterized. Observations demonstrate that disease-specific epimutation DMRs exist for the transgenerational dioxin lineage rats that can potentially be used as epigenetic biomarkers for testis, kidney, prostate and obesity diseases. These disease-specific DMRs were associated with genes that have previously been shown to be linked with the specific diseases. This EWAS for transgenerational disease identified potential epigenetic biomarkers and provides the proof of concept of the potential to develop similar biomarkers for humans to diagnose disease susceptibilities and facilitate preventative medicine.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Jennifer L M Thorson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
14
|
Maia J, Fonseca BM, Teixeira N, Correia-da-Silva G. The fundamental role of the endocannabinoid system in endometrium and placenta: implications in pathophysiological aspects of uterine and pregnancy disorders. Hum Reprod Update 2020; 26:586-602. [PMID: 32347309 PMCID: PMC7317288 DOI: 10.1093/humupd/dmaa005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) consists of the cannabinoid receptors CB1 and CB2, the main endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and their metabolic enzymes N-acylphosphatidylethanolamine-specific phospholipase D, fatty acid amide hydrolase, diacylglycerol lipase and monoacylglycerol lipase. This system is involved in the modulation of essential physiological processes. Its role in the reproductive system has become significantly important in recent years, given its major role in events such as gametogenesis, decidualisation, implantation and placentation. OBJECTIVE AND RATIONALE In this paper, we review the literature and summarize the role of the ECS elements in reproduction and their potential as early markers for diagnosis of reproductive disorders or as pharmacological targets for treatment. SEARCH METHODS Original research and review papers published from 1964 to June 2019 were selected in terms of relevance, reliability and quality by searching PubMed, MEDLINE and Web of Science, using the following search terms: endocannabinoid system and endometriosis; endocannabinoid system and ectopic pregnancy; endocannabinoid system and miscarriage; endocannabinoid system and pre-eclampsia; endocannabinoid system and endometrial cancer; endocannabinoid system and reproduction; endocannabinoid, endometrium; placenta; N-acylethanolamines; anandamide; 2-arachidonoylglycerol; and cannabinoids. OUTCOMES This review demonstrates relevant information concerning ECS alterations in endometriosis, ectopic pregnancy, miscarriage, pre-eclampsia and endometrial cancer. We highlight the importance of the endocannabinoids in endometrial and placental physiology and pathophysiology, from studies in vitro and in vivo and in clinical observations. The most studied of the endogenous cannabinoids is AEA. The levels of AEA were increased in plasma of patients with endometriosis and miscarriage, as well as in the fallopian tube of women with ectopic pregnancy and in endometrial biopsies of endometrial cancer. Changes in the pattern of expression of the cannabinoid receptor CB1 were also observed in endometrial biopsies of endometriosis, fallopian tube and decidua of patients with ectopic pregnancy and pre-eclamptic placenta. Moreover, alterations in CB2 expression have been reported in association with endometrial cancer. In general, studies on the cannabinoid signalling through CB2 and on the biological activities of the other major endocannabinoid, namely 2-AG, as well as its metabolic enzymes are scarce and avidly required. WIDER IMPLICATIONS The pathophysiological mechanisms involved in the described endometrial and placental pathologies are still unclear and lack the means for an early diagnosis. Based on current evidence, though alterations in ECS are demonstrated at tissue level, it is difficult to associate plasmatic changes in AEA with specific endometrial and placental diseases. Thus, pairing alterations in AEA levels with 2-AG and/or other endocannabinoid-like molecules may provide more accurate and early diagnoses. In addition, patients may benefit from new therapies that target the ECS and endocannabinoid signalling.
Collapse
Affiliation(s)
- J Maia
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - BM Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - N Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Maternal Exposure to Ambient Air Pollution and Pregnancy Complications in Victoria, Australia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072572. [PMID: 32283665 PMCID: PMC7178226 DOI: 10.3390/ijerph17072572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
The relationship between maternal exposure to ambient air pollution and pregnancy complications is not well characterized. We aimed to explore the relationship between maternal exposure to ambient nitrogen dioxide (NO2) and fine particulate matter (PM2.5) and hypertensive disorders of pregnancy, gestational diabetes mellitus (GDM) and placental abruption. Using administrative data, we defined a state-wide cohort of singleton pregnancies born between 1 March 2012 and 31 December 2015 in Victoria, Australia. Annual average NO2 and PM2.5 was assigned to maternal residence at the time of birth. 285,594 singleton pregnancies were included. An IQR increase in NO2 (3.9 ppb) was associated with reduced likelihood of hypertensive disorders of pregnancy (RR 0.89; 95%CI 0.86, 0.91), GDM (RR 0.92; 95%CI 0.90, 0.94) and placental abruption (RR 0.81; 95%CI 0.69, 0.95). Mixed observations and smaller effect sizes were observed for IQR increases in PM2.5 (1.3 µg/m3) and pregnancy complications; reduced likelihood of hypertensive disorders of pregnancy (RR 0.95; 95%CI 0.93, 0.97), increased likelihood of GDM (RR 1.02; 95%CI 1.00, 1.03) and no relationship for placental abruption. In this exploratory study using an annual metric of exposure, findings were largely inconsistent with a priori expectations and further research involving temporally resolved exposure estimates are required.
Collapse
|
16
|
Rumph JT, Stephens VR, Archibong AE, Osteen KG, Bruner-Tran KL. Environmental Endocrine Disruptors and Endometriosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2020; 232:57-78. [PMID: 33278007 DOI: 10.1007/978-3-030-51856-1_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a consequence of industrialization, thousands of man-made chemicals have been developed with few undergoing rigorous safety assessment prior to commercial use. Ubiquitous exposure to these compounds, many of which act as endocrine-disrupting chemicals (EDCs), has been suggested to be one factor in the increasing incidence of numerous diseases, including endometriosis. Endometriosis, the presence of endometrial glands and stroma outside the uterus, is a common disorder of reproductive-age women. Although a number of population-based studies have suggested that exposure to environmental EDCs may affect a woman's risk of developing this disease, results of epidemiology assessments are often equivocal. The development of endometriosis is, however, a process occurring over time; thus, a single assessment of toxicant body burden cannot definitively be linked to causation of disease. For this reason, numerous investigators have utilized a variety of rodent models to examine the impact of specific EDCs on the development of experimental endometriosis. These studies identified multiple chemicals capable of influencing physiologic processes necessary for the establishment and/or survival of ectopic tissues in rodents, suggesting that these compounds may also be of concern for women. Importantly, these models serve as useful tools to explore strategies that may prevent adverse outcomes following EDC exposure.
Collapse
Affiliation(s)
- Jelonia T Rumph
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | - Victoria R Stephens
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anthony E Archibong
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | - Kevin G Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
17
|
Cecconi S, Rapino C, Di Nisio V, Rossi G, Maccarrone M. The (endo)cannabinoid signaling in female reproduction: What are the latest advances? Prog Lipid Res 2019; 77:101019. [PMID: 31862482 DOI: 10.1016/j.plipres.2019.101019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Cannabis extracts like marijuana have the highest consumption rate worldwide. Yet, their societal acceptance as recreational and therapeutic drugs could represent a serious hazard to female human reproduction, because cannabis ingredients [termed (phyto)cannabinoids] can perturb an endogenous system of lipid signals known as endocannabinoids. Accumulated evidence on animal models and humans has demonstrated a crucial role of these endogenous signals on different aspects of female reproduction, where they act through an ensamble of proteins that synthesize, transport, degrade and traffic them. Several reports have recently evidenced the potential role of endocannabinoids as biomarkers of female infertility for disease treatment and prevention, as well as their possible epigenetic effects on pregnancy. The purpose of this review is to provide an update of data collected in the last decade on the effects of cannabinoids and endocannabinoids on female reproductive events, from development and maturation of follicles and oocytes, to fertilization, oviductal transport, implantation and labor. In this context, a particular attention has been devoted to the ovary and the production of fertilizable oocytes, because recent studies have addressed this hot topic with conflicting results among species.
Collapse
Affiliation(s)
- Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano, 64 - 00143 Rome, Italy.
| |
Collapse
|
18
|
Tanaka K, Mayne L, Khalil A, Baartz D, Eriksson L, Mortlock SA, Montgomery G, McKinnon B, Amoako AA. The role of the endocannabinoid system in aetiopathogenesis of endometriosis: A potential therapeutic target. Eur J Obstet Gynecol Reprod Biol 2019; 244:87-94. [PMID: 31785471 DOI: 10.1016/j.ejogrb.2019.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 01/16/2023]
Abstract
Endometriosis affects a large proportion of women during their reproductive years and is associated with pain and infertility, also affecting psychological wellbeing and quality of life. The pathogenesis of the disease remains unclear, although it is believed to be multifactorial. The endocannabinoid system (ECS) consists of a number of ligands, receptors and enzymes, and has gained interests in endometriosis research. This review aims to summarise all available evidence reporting the roles of the ECS in endometriosis. A literature search of the PubMed, EMBASE, and Web of Science electronic medical databases was performed. Original and review articles published in peer-reviewed journals were included. No publication date or publication status restrictions were imposed. Significant differences in the concentrations and expressions of the components of the ECS were reported in the eutopic and ectopic endometrium, and the systemic circulation of women with endometriosis compared to controls. Endometriosis appears to be associated with downregulation of CB1 receptors and upregulation of TRPV1 receptors. The role of CB1 and progesterone in anti-inflammatory action and the role of TRPV1 in inflammation and pain are of particular interests. Furthermore, the ECS has been reported to be involved in processes relevant to endometriosis, including cell migration, cell proliferation, apoptosis, inflammation, and interacts with sex steroid hormones. The ECS may play a role in disease establishment, progression, and pain in endometriosis. However, reports are based on studies of limited size and there are inconsistencies among the definition of their control groups. There are also conflicting reports regarding precise involvement of the ECS in endometriosis. Future research with larger numbers, strict inclusion and exclusion criteria and detailed clinical information is imperative.
Collapse
Affiliation(s)
- Keisuke Tanaka
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Leah Mayne
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Akram Khalil
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - David Baartz
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Lars Eriksson
- The University of Queensland, UQ Library, Brisbane, Queensland, Australia
| | - Sally-Anne Mortlock
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Grant Montgomery
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Brett McKinnon
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Department of Obstetrics and Gynaecology, University Hospital of Berne, Berne, Switzerland
| | - Akwasi A Amoako
- Department of Obstetrics and Gynaecology, The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Luschnig P, Schicho R. Cannabinoids in Gynecological Diseases. Med Cannabis Cannabinoids 2019; 2:14-21. [PMID: 34676329 DOI: 10.1159/000499164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid system (ECS) is a multifunctional homeostatic system involved in many physiological and pathological conditions. The ligands of the ECS are the endo-cannabinoids, whose actions are mimicked by exogenous cannabinoids, such as phytocannabinoids and synthetic cannabinoids. Responses to the ligands of the ECS are mediated by numerous receptors like the classical cannabinoid receptors (CB1 and CB2) as well as ECS-related receptors, e.g., G protein-coupled receptors 18 and 55 (GPR18 and GPR55), transient receptor potential ion channels, and nuclear peroxisome proliferator-activated receptors. The ECS regulates almost all levels of female reproduction, starting with oocyte production through to parturition. Dysregulation of the ECS is associated with the development of gynecological disorders from fertility disorders to cancer. Cannabinoids that act at the ECS as specific agonists or antagonists may potentially influence dysregulation and, therefore, represent new therapeutic options for the therapy of gynecological disorders.
Collapse
Affiliation(s)
- Petra Luschnig
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Ayakannu T, Taylor AH, Marczylo TH, Konje JC. New Insights of Uterine Leiomyoma Pathogenesis: Endocannabinoid System. Med Sci Monit Basic Res 2019; 25:76-87. [PMID: 30842391 PMCID: PMC6421936 DOI: 10.12659/msmbr.914019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The aim of this study was to determine if components of the endocannabinoid system are modulated in uterine leiomyomas (fibroids). Components studied included cannabinoid receptors 1 (CB1) and 2 (CB2); the G protein-coupled receptor GPR55; transient potential vanilloid receptor 1 (TRPV1) and the endocannabinoid modulating enzymes N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), and their N-acylethanolamine (NAE) ligands: N-arachidonylethanolamine (AEA), N-oleoylethanolamine (OEA), and N-palmityolethanaolamine (PEA). Material/Methods Transcript levels of CB1, CB2, TRPV1, GPR55, NAPE-PLD, and FAAH were measured using RT-PCR and correlated with the tissue levels of the 3 NAEs in myometrial tissues. The tissues studied were: 1) fibroids, 2) myometrium adjacent/juxtaposed to the fibroid lesions, and 3) normal myometrium. Thirty-seven samples were processed for NAE measurements and 28 samples were used for RT-PCR analyses. Results FAAH expression was significantly lower in fibroids, resulting in a NAPE-PLD: FAAH ratio that favors higher AEA levels in pre-menopausal tissues, whilst PEA levels were significantly lower, particularly in post-menopausal women, suggesting PEA protects against fibroid pathogenesis. The CB1: CB2 ratio was lower in fibroids, suggesting that loss of CB1 expression affects the fibroid cell phenotype. Significant correlations between reduced FAAH, CB1, and GPR55 expression and PEA in fibroids indicate that the loss of these endocannabinoid system components are biomarkers of leiomyomata. Conclusions Loss of expression of CB1, FAAH, GPR55, and PEA production are linked to the pathogenesis of uterine fibroids and further understanding of this might eventually lead to better disease indicators or the development of therapeutic potentials that might eventually be used in the management of uterine fibroids.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Department of Obstetrics and Gynaecology, North Cumbria University Hospital NHS Trust, Carlisle, United Kingdom
| | - Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Department of Molecular and Cellular Biology, University of Leicester, Leicester, United Kingdom
| | - Timothy H Marczylo
- Endocannabinoid Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Public Health England, Chilton, Oxford, United Kingdom
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Department of Obstetrics and Gynaecology, Sidra Medicine, Doha and Wellness Women's Research Centre, Doha, Qatar
| |
Collapse
|
21
|
Shen X, Duan H, Wang S, Hong W, Wang YY, Lin SL. Expression of Cannabinoid Receptors in Myometrium and its Correlation With Dysmenorrhea in Adenomyosis. Reprod Sci 2019; 26:1618-1625. [PMID: 30832539 DOI: 10.1177/1933719119833483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The myometrium, especially the junctional zone (JZ), is now well documented to have a role in the pathogenesis of adenomyosis. Cannabinoid receptors have been shown to participate in the establishment of endometriosis and its pain perception. However, its relation to adenomyosis has not been identified yet. The aim of this study was to investigate the expression of cannabinoid receptor type I (CB1) and type II (CB2) in myometrium of uteri with and without adenomyosis and determine the correlation between their levels and clinical parameters of adenomyosis. We collected tissue samples of JZ and the outer myometrium from 45 premenopausal women with adenomyosis and 34 women without adenomyosis. CB1 and CB2 messenger RNA (mRNA) and protein expression levels were evaluated by the use of Western blotting and real-time quantitative polymerase chain reaction from all samples. Clinical information on the severity of dysmenorrhea and other data were collected. We found both CB1 and CB2 mRNA and protein levels in women with adenomyosis were significantly higher than those of controls, and CB1 expression levels in JZ were positively correlated with the severity of dysmenorrhea. These data suggest that cannabinoid receptor CB1 may be involved in the pathogenesis of dysmenorrhea in adenomyosis and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Xue Shen
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hua Duan
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Sha Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Hong
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yu-Yan Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Si-Li Lin
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
22
|
Decreased Expression of Cannabinoid Receptors in the Eutopic and Ectopic Endometrium of Patients with Adenomyosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5468954. [PMID: 30800671 PMCID: PMC6360557 DOI: 10.1155/2019/5468954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/12/2023]
Abstract
Objective Adenomyosis is a common gynecologic benign disease that may have a life-long negative impact on women. Previous studies have indicated that the endocannabinoid system may participate in the progress of endometriosis. Our research aims to analyze the expression patterns of the typical cannabinoid receptors (CB1 and CB2), the main constituents of the endocannabinoid system, in endometrial samples derived from patients diagnosed as adenomyosis or not. Methods Eutopic and corresponding ectopic endometrium from 45 premenopausal women diagnosed as adenomyosis and normal endometrium from 34 age-matched women lacking evidence of adenomyosis were examined by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) to determine the CB1 and CB2 expression levels. Results In either the proliferative or the secretory phase, CB1 and CB2 protein and mRNA levels were both significantly lower in the eutopic and ectopic endometrium of adenomyosis when compared with normal endometrium. For women with adenomyosis, CB1 and CB2 protein and mRNA levels were much lower in the ectopic endometrium than the eutopic in both phases of the cycle. Both CB1 and CB2 protein and mRNA levels were increased during the secretory phase in normal endometrium, while CB1 lost its cyclic variation in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis. Conclusion The decreased expression of CB1 and CB2 in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis suggests that cannabinoid receptors may participate in the pathogenesis of adenomyosis.
Collapse
|
23
|
Yao M, Hu T, Wang Y, Du Y, Hu C, Wu R. Polychlorinated biphenyls and its potential role in endometriosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:837-845. [PMID: 28774553 DOI: 10.1016/j.envpol.2017.06.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
With the progress of global industrialization and environmental deterioration, the relationship between human health and the living environment has become an increasing focus of attention. Polychlorinated biphenyls (PCBs, including dioxin-like polychlorinated biphenyls and non-dioxin-like polychlorinated biphenyls), as part of the organic chlorine contaminants, have been suspected as playing a role in the etiopathogenesis of endometriosis. Several population-based studies have proposed that exposure to PCBs may increase the risk of developing endometriosis, while some epidemiological studies have failed to find any association between PCBs and endometriosis. The purpose of this review is to discuss the potential pathophysiological relationship between endometriosis and PCBs with a focus on both dioxin-like polychlorinated biphenyls and non-dioxin-like polychlorinated biphenyls.
Collapse
Affiliation(s)
- Mengyun Yao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Tingting Hu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Yinfeng Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Yongjiang Du
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Changchang Hu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China
| | - Ruijin Wu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1Xueshi Road, Hangzhou 310006, P.R. China.
| |
Collapse
|
24
|
Bilgic E, Guzel E, Kose S, Aydin MC, Karaismailoglu E, Akar I, Usubutun A, Korkusuz P. Endocannabinoids modulate apoptosis in endometriosis and adenomyosis. Acta Histochem 2017; 119:523-532. [PMID: 28549792 DOI: 10.1016/j.acthis.2017.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Adenomyosis that is a form of endometriosis is the growth of ectopic endometrial tissue within the muscular wall of the uterus (myometrium), which may cause dysmenorrhea and infertility. Endocannabinoid mediated apoptotic mechanisms of endometriosis and adenomyosis are not known. We hypothesized that the down regulation of endocannabinoid receptors and/or alteration in their regulatory enzymes may have a direct role in the pathogenesis of endometriosis and adenomyosis through apoptosis. Endocannabinoid receptors CB1 and CB2, their synthesizing and catabolizing enzymes (FAAH, NAPE-PLD, DAGL, MAGL) and the apoptotic indexes were immunohistochemically assessed in endometriotic and adenomyotic tissues. Findings were compared to normal endometrium and myometrium. Endometrial adenocarcinoma (Ishikawa) and ovarian endometriosis cyst wall stromal (CRL-7566) cell lines were furthermore cultured with or without cannabinoid receptor agonists. The IC50 value for CB1 and CB2 receptor agonists was quantified. Cannabinoid agonists on cell death were investigated by Annexin-V/Propidium iodide labeling with flow cytometry. CB1 and CB2 receptor levels decreased in endometriotic and adenomyotic tissues compared to the control group (p=0,001 and p=0,001). FAAH, NAPE-PLD, MAGL and DAGL enzyme levels decreased in endometriotic and adenomyotic tissues compared to control (p=0,001, p=0,001, p=0,001 and p=0,002 respectively). Apoptotic cell indexes both in endometriotic and adenomyotic tissues also decreased significantly, compared to the control group (p=0,001 and p=0,001). CB1 and CB2 receptor agonist mediated dose dependent fast anti-proliferative and pro-apoptotic effects were detected in Ishikawa and ovarian endometriosis cyst wall stromal cell lines (CRL-7566). Endocannabinoids are suggested to increase apoptosis mechanisms in endometriosis and adenomyosis. CB1 and CB2 antagonists can be considered as potential medical therapeutic agents for endometriosis and adenomyosis.
Collapse
|
25
|
Patel BG, Rudnicki M, Yu J, Shu Y, Taylor RN. Progesterone resistance in endometriosis: origins, consequences and interventions. Acta Obstet Gynecol Scand 2017; 96:623-632. [DOI: 10.1111/aogs.13156] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Bansari G. Patel
- Department of Obstetrics and Gynecology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Martin Rudnicki
- Department of Obstetrics and Gynecology; Odense University Hospital; Odense Denmark
| | - Jie Yu
- Department of Obstetrics and Gynecology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Yimin Shu
- Department of Obstetrics and Gynecology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Robert N. Taylor
- Department of Obstetrics and Gynecology; Wake Forest School of Medicine; Winston-Salem NC USA
| |
Collapse
|
26
|
Bouaziz J, Bar On A, Seidman DS, Soriano D. The Clinical Significance of Endocannabinoids in Endometriosis Pain Management. Cannabis Cannabinoid Res 2017; 2:72-80. [PMID: 28861506 PMCID: PMC5436335 DOI: 10.1089/can.2016.0035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Patients with endometriosis often suffer from diffuse and poorly localized severe pain. The current pain management strategies include medical and hormonal therapy, as well as surgery. Medical management of pain is often insufficient and is associated with high rate of recurrence. Better pain management is therefore of urgent need. Methods: Among the various candidates, the endocannabinoid system (ECS) has recently emerged as a relevant pharmacological target for the management of endometriosis-related pain. A computerized literature search was performed to identify relevant studies combining the keywords "endometriosis," "endocannabinoid," "cannabinoid receptor," "THC," and "pain mechanisms." Conclusions: This review describes the multiple and complex pain mechanisms associated with endometriosis. Current data and theories concerning the link between the ECS and pain management for endometriosis patients are presented. Finally, we will discuss which aspects of endometriosis-associated pain can be targeted by modulation of the ECS.
Collapse
Affiliation(s)
- Jerome Bouaziz
- Department of Obstetrics and Gynecology, The Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Urology, The Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Alexandra Bar On
- Department of Obstetrics and Gynecology, The Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Urology, The Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Daniel S. Seidman
- Department of Obstetrics and Gynecology, The Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Urology, The Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - David Soriano
- Department of Obstetrics and Gynecology, The Chaim Sheba Medical Center, Ramat-Gan, Israel
- Department of Urology, The Chaim Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
27
|
Stocks MM, Crispens MA, Ding T, Mokshagundam S, Bruner-Tran KL, Osteen KG. Therapeutically Targeting the Inflammasome Product in a Chimeric Model of Endometriosis-Related Surgical Adhesions. Reprod Sci 2017; 24:1121-1128. [PMID: 28322132 DOI: 10.1177/1933719117698584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Development of adhesions commonly occurs in association with surgery for endometriosis. Even in the absence of surgery, women with endometriosis appear to be at an enhanced risk of developing adhesions. In the current study, we utilized a chimeric mouse model of experimental endometriosis in order to examine the role of inflammasome activation in the development of postsurgical adhesions. Mice were randomized to receive peritoneal injections of human endometrial tissue fragments or endometrial tissue conditioned media (CM) from women with or without endometriosis 16 hours after ovariectomy and placement of an estradiol-releasing silastic capsule. A subset of mice receiving CM was also treated with interleukin (IL) 1 receptor antagonist (IL-1ra). Our studies demonstrate that peritoneal injection of endometrial tissue fragments near the time of surgery resulted in extensive adhesive disease regardless of tissue origin. However, adhesion scores were significantly higher in mice receiving CM from tissues acquired from patients with endometriosis compared to control tissue CM ( P = .0001). Cytokine bead array analysis of endometrial CM revealed enhanced expression of IL-1β from patients with endometriosis compared to controls ( P < .01). Finally, the ability of human tissue CM to promote adhesive disease was dramatically reduced in mice cotreated with IL-1ra ( P < .0001). Our data implicate enhanced expression of IL-1β in women with endometriosis as a potential causal factor in their increased susceptibility of developing postsurgical adhesions. Thus, targeting inflammasome activation may be an effective strategy for the prevention of surgical adhesions in patients with endometriosis.
Collapse
Affiliation(s)
- Meredith M Stocks
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marta A Crispens
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tianbing Ding
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilpa Mokshagundam
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaylon L Bruner-Tran
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin G Osteen
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,3 VA Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
28
|
Sanchez AM, Quattrone F, Pannese M, Ulisse A, Candiani M, Diaz-Alonso J, Velasco G, Panina-Bordignon P. The cannabinoid receptor CB1 contributes to the development of ectopic lesions in a mouse model of endometriosis. Hum Reprod 2016; 32:175-184. [PMID: 27821707 DOI: 10.1093/humrep/dew281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does signaling via the cannabinoid (CB1) receptor play a role in the pathogenesis of endometriosis in a mouse model? SUMMARY ANSWER Mice treated with a CB1 agonist developed larger ectopic lesions, while less severe lesions developed in the absence of functional CB1 expression. WHAT IS KNOWN ALREADY The expression of components of the endocannabinoid system has been demonstrated in both mouse and human uteri. CB1 receptors are expressed in human epithelial and stromal cell lines derived from eutopic endometrium and deep infiltrating endometriosis nodules. STUDY DESIGN, SIZE, DURATION This was a randomized study in a mouse model of endometriosis. In a first set of experiments, mice with endometriosis were treated with the CB1 receptor agonist methanandamide (MET) (5 mg/kg, n = 20) on Days 1-5 and 8-12. In a second set of experiments, endometriosis development was evaluated in CB1-/- mice and in their wild-type (WT) littermates. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometriosis-like lesions were induced in Balb/c and C57/Bl6 mice. Two weeks after disease induction, the lesions were counted, measured and either included for immunohistochemistry analysis or frozen for gene expression profiling by semi-quantitative real-time PCR. To limit the role of chance, the experiments were conducted under standardized laboratory conditions with appropriate controls. MAIN RESULTS AND THE ROLE OF CHANCE The lesion total volume was significantly higher in MET-treated compared with vehicle-treated mice (P < 0.05). Expression levels of mRNA for survivin, N-cadherin, integrin β1 and interleukin-6 were increased in the ectopic endometrium of MET-treated versus vehicle-treated mice (P < 0.05). CB1-/- recipients that received endometrial tissue fragments from CB1-/- donors, WT recipients that received endometrial tissue fragments from CB1-/- donors and CB1-/- recipients that received endometrial tissue fragments from WT donors all showed a significant reduction in total lesion volume and lower expression of survivin and N-cadherin compared with WT recipients receiving uterine fragments from WT donors (P < 0.05). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION We provide evidence that endocannabinoid signaling via CB1 receptor plays a role in the development of endometriosis in a mouse model. However, the relative contribution of the CB1-mediated signaling pathways active in inflammatory, uterine and peritoneal cells remains to be ascertained. Since the study was performed in a mouse model, the significance of the findings in the human system warrants further investigation. WIDER IMPLICATIONS OF THE FINDINGS Clarifying the function and regulation of CB1 and its molecular interactions with endogenous ligands, and how endocannabinoids levels are regulated in women with endometriosis, represent critical areas of research for the potential development of a novel medical treatment of the disease. STUDY FUNDING/COMPETING INTERESTS A.M.S. was supported by a fellowship from Fondazione Giorgio Pardi. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Ana-Maria Sanchez
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Quattrone
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Pannese
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Adele Ulisse
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Javier Diaz-Alonso
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University , Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University , Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Paola Panina-Bordignon
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
29
|
Bruner-Tran KL, Gnecco J, Ding T, Glore DR, Pensabene V, Osteen KG. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: Translating lessons from murine models. Reprod Toxicol 2016; 68:59-71. [PMID: 27423904 DOI: 10.1016/j.reprotox.2016.07.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
Abstract
Humans and other animals are exposed to a wide array of man-made toxicants, many of which act as endocrine disruptors that exhibit differential effects across the lifespan. In humans, while the impact of adult exposure is known for some compounds, the potential consequences of developmental exposure to endocrine disrupting chemicals (EDCs) is more difficult to ascertain. Animal studies have revealed that exposure to EDCs prior to puberty can lead to adult reproductive disease and dysfunction. Specifically, in adult female mice with an early life exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), we demonstrated a transgenerational occurrence of several reproductive diseases that have been linked to endometriosis in women. Herein, we review the evidence for TCDD-associated development of adult reproductive disease as well as known epigenetic alterations associated with TCDD and/or endometriosis. We will also introduce new "Organ-on-Chip" models which, combined with our established murine model, are expected to further enhance our ability to examine alterations in gene-environment interactions that lead to heritable disease.
Collapse
Affiliation(s)
- Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Juan Gnecco
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tianbing Ding
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Dana R Glore
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Virginia Pensabene
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin G Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville TN 37212, USA
| |
Collapse
|
30
|
Sanchez AM, Cioffi R, Viganò P, Candiani M, Verde R, Piscitelli F, Di Marzo V, Garavaglia E, Panina-Bordignon P. Elevated Systemic Levels of Endocannabinoids and Related Mediators Across the Menstrual Cycle in Women With Endometriosis. Reprod Sci 2016; 23:1071-9. [PMID: 26887427 DOI: 10.1177/1933719116630414] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cannabinoids and modulators of the endocannabinoid system affect specific mechanisms that are critical to the establishment and development of endometriosis. The aim of this study was to measure the systemic levels of endocannabinoids and related mediators in women with and without endometriosis and to investigate whether such levels correlated with endometriosis-associated pain. Plasma and endometrial biopsies were obtained from women with a laparoscopic diagnosis of endometriosis (n = 27) and no endometrial pathology (n = 29). Plasma levels of endocannabinoids (N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and related mediators (N-oleoylethanolamine [OEA] and N-palmitoylethanolamine [PEA]), messenger RNA expression of some of their receptors (cannabinoid receptor type 1 [CB1], CB2, transient receptor potential vanilloid type [TRPV1]), and the enzymes involved in the synthesis (N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D [NAPE-PLD]) and degradation (fatty acid amide hydrolase 1 [FAAH]) of AEA, OEA, and PEA were evaluated in endometrial stromal cells. The systemic levels of AEA, 2-AG, and OEA were elevated in endometriosis in the secretory phase compared to controls. The expression of CB1 was higher in secretory phase endometrial stromal cells of controls versus endometriosis. Similar expression levels of CB2, TRPV1, NAPE-PLD, and FAAH were detected in controls and endometriosis. Patients with moderate-to-severe dysmenorrhea and dyspareunia showed higher AEA and PEA levels than those with low-to-moderate pain symptoms, respectively. The association of increased circulating AEA and 2-AG with decreased local CB1 expression in endometriosis suggests a negative feedback loop regulation, which may impair the capability of these mediators to control pain. These preliminary data suggest that the pharmacological manipulation of the action or levels of these mediators may offer an alternative option for the management of endometriosis-associated pain.
Collapse
Affiliation(s)
- Ana Maria Sanchez
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffaella Cioffi
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Candiani
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, CNR, Pozzuoli, Italy
| | | | | | | | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
31
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1407] [Impact Index Per Article: 140.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
32
|
Wolfson ML, Correa F, Leishman E, Vercelli C, Cymeryng C, Blanco J, Bradshaw HB, Franchi AM. Lipopolysaccharide-induced murine embryonic resorption involves changes in endocannabinoid profiling and alters progesterone secretion and inflammatory response by a CB1-mediated fashion. Mol Cell Endocrinol 2015; 411:214-22. [PMID: 25958042 PMCID: PMC4458170 DOI: 10.1016/j.mce.2015.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
Genital tract infections are a common complication of human pregnancy that can result in miscarriage. We have previously shown that a lipopolysaccharide (LPS) induces embryonic resorption in a murine model of inflammatory miscarriage. This is accompanied by a dramatic decrease in systemic progesterone levels associated with a robust pro-inflammatory response that results in embryo resorption. Here, we tested the hypothesis that the endogenous cannabinoid system (eCS), through cannabinoid receptor 1 (CB1), plays a role in regulating progesterone levels and, therefore, the pro-inflammatory response. We show that LPS treatment in pregnant mice causes significant changes in the eCS ligands, which are reversed by progesterone treatment. We further show the CB1-KO mice maintain higher plasma progesterone levels after LPS treatment, which is associated with a feebler uterine inflammatory response and a significant drop in embryo resorption. These data suggest that manipulation of CB1 receptors and/or ligands is a potential therapeutic avenue to decrease infection-induced miscarriage.
Collapse
Affiliation(s)
- Manuel L Wolfson
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina.
| | - Fernando Correa
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Claudia Vercelli
- Biomedicine Research Institute of Buenos Aires, Partner Institute of the Max Planck Society (MPSP), National Research Council, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Cora Cymeryng
- Laboratory of Molecular Endocrinology, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| | - Julieta Blanco
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ana María Franchi
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina
| |
Collapse
|
33
|
Ayakannu T, Taylor AH, Willets JM, Konje JC. The evolving role of the endocannabinoid system in gynaecological cancer. Hum Reprod Update 2015; 21:517-35. [PMID: 25958409 DOI: 10.1093/humupd/dmv022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The 'endocannabinoid system' (ECS), comprising endogenous ligands (endocannabinoids) and their regulating enzymes, together with the cannabinoid receptors, has attracted a great deal of attention because it affects not only all facets of human reproduction, from gametogenesis through to parturition and beyond, but also targets key mechanisms affecting some hallmarks of cancer. Recent evidence showing that cannabinoid receptors play a very important role in the development of malignancies outside of the reproductive organs suggests a similar role for the ECS in the establishment or continued development of gynaecological malignancy. METHODS Primary papers and review articles, and primary sources within these papers, up to December 2014, on the evolving role of the ECS in cancer, with a special focus on gynaecological cancers, were obtained by Medline and PubMed searches using the search terms: 'cancer', 'cannabinoid', 'endocannabinoid', 'gynaecology' and 'malignancy'. Non-English manuscripts were excluded. RESULTS More than 2100 sources were obtained from which only 112 were specifically important to the topic. Analysis of those articles supports a role of the ECS in gynaecological cancers but leaves many gaps in our knowledge that need to be filled. How some of the relevant receptors are activated and cause changes in cell phenotypes that progress to malignancy remains undiscovered and an area for future research. Increasing evidence suggests that malignant transformation within the female genital tract could be accompanied by deregulation of components of the ECS, acting through rather complex cannabinoid receptor-dependent and receptor-independent mechanisms. CONCLUSIONS The paucity of studies in this area suggests that research using animal models is needed to evaluate endocannabinoid signalling in cancer networks. Future randomized clinical studies should reveal whether endocannabinoids or their derivatives prove to be useful therapeutic targets for gynaecological and other cancers.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK Biosciences, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG1 4BU, UK
| | - Jonathan M Willets
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK Department of Obstetrics and Gynaecology, Sidra Medical and Research Centre, Doha P.O. Box 26999, Qatar
| |
Collapse
|
34
|
Environmental Influences on the Development of Endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2013. [DOI: 10.5301/je.5000153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose Several environmental toxicants (ETs), including dioxins and dioxin-like compounds (DLCs), perfluorochemicals, organochlorine pesticides, phthalates, and heavy metals (especially cadmium with its estrogen-like properties in animal models) have been investigated as possibly being related to endometriosis. Methods Systematic review of pertinent literature. Results DLCs have been the most investigated ETs. DLCs are persistent organic pollutants with highly toxic potential and include three types of compounds: polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) or furans, and polychlorinated biphenyls (PCBs). The most toxic is 2, 3, 7, 8- tetrachlorodibenzo-p-dioxin (TCDD). The connection mechanism between dioxins and endometriosis is still unclear. However, dioxins and DLCs are endocrine-disrupting compounds that can affect the pathobiology of endometriosis at multiple levels. Part of the dioxin and DLCs toxic effects can be accounted for by their interaction with the aryl hydrocarbon receptor (AhR). It has been proposed that dioxin can initiate or promote endometriosis by means of interaction with estrogen receptors or by suppressing the expression of progesterone receptors. Furthermore, TCDD alters the expression of cytokines and growth factors, remodeling enzymes and cytochrome P450 expression and activity. Conclusions Studies in rhesus models have revealed a correlation between dioxin exposure and endometriosis. However, evidence from epidemiologic studies is inconclusive.
Collapse
|
35
|
Herington JL, Glore DR, Lucas JA, Osteen KG, Bruner-Tran KL. Dietary fish oil supplementation inhibits formation of endometriosis-associated adhesions in a chimeric mouse model. Fertil Steril 2012; 99:543-50. [PMID: 23103017 DOI: 10.1016/j.fertnstert.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To examine whether dietary fish oil supplementation reduces development of spontaneous endometriosis-associated adhesions using an established model. DESIGN Laboratory-based study. SETTING Medical center research laboratory. PATIENT(S)/ANIMAL(S): Disease-free women of reproductive age and nude mice. INTERVENTION(S) Women were not provided any intervention. Mice were randomized to receive fish oil supplementation or control diet. MAIN OUTCOME MEASURE(S) Experimental endometriosis was established in mice via injection of human endometrial tissue within 16 hours of ovariectomy. Mice were provided standard or menhaden fish oil-supplemented diets for ≥ 2 weeks before initiation of experimental endometriosis and until killing them 1 week later. At necropsy, mice were examined for the presence and extent of adhesions and endometriotic-like lesions. Tissues were excised and morphologically characterized. RESULT(S) Adhesions/lesions were reduced in mice provided with dietary fish oil compared with control animals. Leukocytes were more numerous within the adhesions/lesions of the mice maintained on the standard diet compared with animals provided with fish oil. As indicated by staining intensity, collagen deposition was greater at adhesion sites within control mice compared with fish oil-supplemented animals. CONCLUSION(S) Wound-healing associated with surgery created an inflammatory peritoneal microenvironment that promoted the development of both experimental endometriosis and adhesions in a murine model. Targeting excessive inflammation with fish oil may be an effective adjuvant therapy to reduce the development of postsurgical adhesions related to endometriosis.
Collapse
Affiliation(s)
- Jennifer L Herington
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|