1
|
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Endometriosis: An Immunologist's Perspective. Int J Mol Sci 2025; 26:5193. [PMID: 40508002 PMCID: PMC12154487 DOI: 10.3390/ijms26115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/27/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Endometriosis, a complex inflammatory disease, affects a significant proportion of women of reproductive age, approximately 10-15%. The disease involves the growth of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling and fibrosis. Hormonal imbalances, accompanied by local and general inflammation and pain, are key features of endometriosis. Endometriotic lesions are associated with the overproduction of cytokines, metalloproteinases, prostaglandins, reactive oxygen radicals, and extracellular vesicles. Genetic predisposition and cytokine gene polymorphisms have been documented. Macrophages, dendritic cells, mast cells, Th1 in the early phase, Th2 in the late phase, and T regulatory cells play a crucial role in endometriosis. Reduced NK cell function and impaired immune vigilance contribute to endometrial growth. The strong inflammatory condition of the endometrium poses a barrier to the proper implantation of the zygote, contributing to the infertility of these patients. Cytokines from various cell types vary with the severity of the disease. The role of microbiota in endometriosis is still under study. Endometriosis is associated with autoimmunity and ovarian cancer. Hormonal treatments and surgery are commonly used; however, recent interest focuses on anti-inflammatory and immunomodulatory therapies, including cytokine and anti-cytokine antibodies. Modulating the immune response has proven critical; however, more research is needed to optimize treatment for these patients.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic (M.H.)
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic (M.H.)
| | - Marian Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacky University, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Wang H, Cui G, Meng X, Wang X, Luan Z, Gong J, Dai S, Gao T. Association of serum fatty acids with bone health in rural elderly population in Qingdao, China: A cross-sectional study. Lipids 2025; 60:39-48. [PMID: 39394914 DOI: 10.1002/lipd.12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/11/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
As a type of macronutrient, fatty acids (FA) play significant roles in the bone health of elderly people. However, the specific association between different types of FA and bone health is not fully understood, especially in rural elderly populations. To address this gap, a study was conducted in rural areas of Qingdao, China. Participants aged 65 and older were randomly recruited from 11 rural villages in Licha town, Qingdao City. The levels of serum FA in their serum were measured to investigate the associations between FA and bone mass. The results showed that levels of saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (n-3 PUFA), and n-6 polyunsaturated fatty acids (n-6 PUFA) were all significantly associated with bone mass. Specifically, higher levels of SFA were positively correlated with low bone mass (LBM), while PUFA levels were inversely correlated with LBM. Furthermore, the odds ratio (OR) for LBM exhibited a significant nonlinear dose-response relationship (pnonlinearity = 0.1989) with SFA levels, and a significant nonlinear dose-dependent relationship was also observed with the levels of n-3PUFA and n-6PUFA (pnonlinearity = 0.6183, 0.5808, respectively), indicating that increasing dietary PUFA intake appropriately and controlling SFA intake may benefit the bone health of elderly individuals in rural areas.
Collapse
Affiliation(s)
- Haoyu Wang
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangwei Cui
- Health Service Center of Licha Community, Qingdao, China
| | - Xiangyuan Meng
- School of Public Health, Jilin University, Changchun, China
| | - Xingxu Wang
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhaohui Luan
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Shiyou Dai
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Du H, You L, Wu A, Wang F, Yu J, Chen C. Resolvin D1 Inhibits IL-6-Induced Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Targeting IL-6/STAT3 Signaling. Cell Biochem Biophys 2024; 82:1453-1461. [PMID: 38740668 DOI: 10.1007/s12013-024-01299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Colorectal cancer (CRC) has emerged as a prevalent malignancy worldwide, exhibiting the high morbidity and mortality rates. Resolvin D1 (RvD1) can exert anti-inflammation and anti-cancer effects on various diseases. This study is aimed to explore the role of RvD1 in CRC cells. HCT15 and SW480 cells were stimulated with IL-6 in our study. A series of assays such as CCK-8, colony formation, wound healing, Transwell, Western blotting, and immunofluorescence staining were designed and conducted to figure out the role of RvD1 in CRC cells. RvD1 suppressed IL-6-induced SW480 and HCT15 cell proliferation. In addition, RvD1 inhibited IL-6-induced SW480 and HCT15 cell migration, invasion, and EMT process. In mechanism, RvD1 inhibited the activation of IL-6/STAT3 signaling in SW480 and HCT15 cells. Angoline strengthened the inhibitive effect of RvD1 on cell malignancy. RvD1 inhibited cell growth, migration, invasion and EMT process by inactivating IL-6/STAT3 signaling in CRC.
Collapse
Affiliation(s)
- Heng Du
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Lijuan You
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Anding Wu
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Fei Wang
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Jie Yu
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Chaowu Chen
- Department of Gestrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 438000, China.
| |
Collapse
|
4
|
Han Y, Wang D, Cai S, Zhang L, Xue J. Resolvin D1 level during different trimesters of pregnancy for predicting the risk of fetal growth retardation in elderly pregnancy. Scand J Clin Lab Invest 2024; 84:154-159. [PMID: 38639268 DOI: 10.1080/00365513.2024.2338739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Resolvin D1 (RvD1) is potentially associated with fetal growth retardation (FGR) through alleviating maternal inflammation and its linkage with several pregnancy complications. Thus, this study detected RvD1 levels at different trimesters of pregnancy, aiming to investigate its role in predicting FGR risk of elderly pregnant women. This prospective, observational cohort study enrolled 165 elderly pregnant women aged ≥35 years. Serum RvD1 was detected at 10-13 weeks (early pregnancy), 20-23 weeks (middle pregnancy), and 30-33 weeks (late pregnancy) of gestational week by enzyme-linked immunosorbent assay. RvD1 was varied among different trimesters of pregnancy in elderly pregnant women (p < 0.001). FGR occurred in 25 (15.2%) women in this study. RvD1 at early (p = 0.009), middle (p = 0.002), and late (p = 0.003) pregnancy was decreased in women with FGR versus those without. By multivariate analysis, RvD1 at middle pregnancy (odds ratio (OR): 0.477, p < 0.001), pre-pregnancy body mass index (OR: 0.763, p = 0.025), and gestational diabetes mellitus (yes versus no) (OR: 0.071, p = 0.031) were independently correlated with declined FGR risk. While age (OR: 1.382, p = 0.009) was independently associated with elevated risk of FGR. Furthermore, the combination of these independent factors as a predictive model exhibited a good potential for assessing FGR risk (area under the curve: 0.802, 95% confidence interval: 0.711-0.894). In conclusion, RvD1 at different trimesters of pregnancy is negatively linked with the risk of FGR, whose level at middle pregnancy serves as an independent factor for FGR risk in elderly pregnant women.
Collapse
Affiliation(s)
- Ying Han
- Department of Ultrasound, Xianxian Hospital of TCM, Xianxian, China
| | - Dandan Wang
- Department of Ultrasound, Xianxian Hospital of TCM, Xianxian, China
| | - Shufang Cai
- Department of Gynecology and Obstetrics, Xianxian Hospital of TCM, Xianxian, China
| | - Lina Zhang
- Department of Gynecology and Obstetrics, Mengcun Hui Autonomous County Hospital, Cangzhou, China
| | - Jingxian Xue
- Department of Gynecology, Shijiazhuang Changcheng Hospital of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
| |
Collapse
|
5
|
Nunes VS, Abrahão O, Rogério AP, Serhan CN. ALX/FPR2 Activation by Stereoisomers of D1 Resolvins Elucidating with Molecular Dynamics Simulation. J Phys Chem B 2023; 127:6479-6486. [PMID: 37428488 PMCID: PMC10528287 DOI: 10.1021/acs.jpcb.3c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Chronic inflammation contributes to several diseases, but its resolution is driven by specialized pro-resolving mediators (SPM) such as resolvin D1 (RvD1) and its epimer aspirin-triggered resolvin D1 (AT-RvD1), both biosynthesized from ω-3 fatty docosahexaenoic acid (DHA). RvD1 and AT-RvD1 have anti-inflammatory and pro-resolution potentials, and their effects could be mediated by formyl peptide receptor type 2 receptor ALX/FPR2, a G-protein-coupled receptor (GPCR). In this work, we performed 44 μs of molecular dynamics simulations with two complexes: FPR2@AT-RvD1 and FPR2@RvD1. Our results show the following: (i) in the AT-RvD1 simulations, the ALX/FPR2 receptor remained in the active state in 62% of the frames, while in the RVD1 simulations, the receptor remained in the active state in 74% of the frames; (ii) two residues, R201 and R205, of ALX/FPR2 appear, establishing interactions with both resolvins in all simulations (22 in total); (iii) RvD1 hydrogen bonds with R201 and R205 presented higher frequency than AT-RvD1; and (iv) residues R201 and R205 are the two receptor hotspots, demonstrated by the binding free calculations. Such results show that the ALX/FPR2 receptor remained in the active state for longer in the FPR2@RvD1 simulations than in the FPR2@AT-RvD1 simulations.
Collapse
Affiliation(s)
- Vinicius S. Nunes
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brasil
- Laboratório de Química Computacional Medicinal, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Odonírio Abrahão
- Laboratório de Química Computacional Medicinal, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Alexandre P. Rogério
- Laboratório de Imunofarmacologia Experimental, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
7
|
Neto AC, Santos-Pereira M, Abreu-Mendes P, Neves D, Almeida H, Cruz F, Charrua A. The Unmet Needs for Studying Chronic Pelvic/Visceral Pain Using Animal Models. Biomedicines 2023; 11:biomedicines11030696. [PMID: 36979674 PMCID: PMC10045296 DOI: 10.3390/biomedicines11030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
The different definitions of chronic pelvic/visceral pain used by international societies have changed over the years. These differences have a great impact on the way researchers study chronic pelvic/visceral pain. Recently, the role of systemic changes, including the role of the central nervous system, in the perpetuation and chronification of pelvic/visceral pain has gained weight. Consequently, researchers are using animal models that resemble those systemic changes rather than using models that are organ- or tissue-specific. In this review, we discuss the advantages and disadvantages of using bladder-centric and systemic models, enumerating some of the central nervous system changes and pain-related behaviors occurring in each model. We also present some drawbacks when using animal models and pain-related behavior tests and raise questions about possible, yet to be demonstrated, investigator-related bias. We also suggest new approaches to study chronic pelvic/visceral pain by refining existing animal models or using new ones.
Collapse
Affiliation(s)
- Ana Catarina Neto
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Mariana Santos-Pereira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Abreu-Mendes
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Delminda Neves
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Henrique Almeida
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Ginecologia-Obstetrícia, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
8
|
Cheng J, Li C, Ying Y, Lv J, Qu X, McGowan E, Lin Y, Zhu X. Metformin Alleviates Endometriosis and Potentiates Endometrial Receptivity via Decreasing VEGF and MMP9 and Increasing Leukemia Inhibitor Factor and HOXA10. Front Pharmacol 2022; 13:750208. [PMID: 35273494 PMCID: PMC8902464 DOI: 10.3389/fphar.2022.750208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Endometriosis affects endometrial receptivity, a key factor for successful embryo implantation. Metformin treatment is associated with alleviating the symptoms of endometriosis; however the mechanism of metformin action is unclear. Neoangiogenesis plays an important role in the development and recurrence of endometriosis. In addition, the leukemia inhibitor factor (LIF) and HOXA10 genes are also distinguishing markers of endometriosis (decrease) and endometrial receptivity (increase). This study investigated the therapeutic potentials of metformin and the underlying mechanism using an in vivo rat endometriosis model. Methods: Female Wistar albino mature rats with experimentally induced endometriosis were used in this study. Metformin was administered at doses of 100 mg/kg/d and 200 mg/kg/d. The volume of endometriotic implants was assessed. The protein and mRNA expression of the vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), the endometrial receptivity markers, LIF and HOXA10, were measured in the endometrium of rats with endometriosis. Results: Metformin treatment significantly suppressed the growth of endometriotic implants. Further, the expression of VEGF and MMP-9 protein and mRNA in endometriotic implants were significantly reduced. Metformin also significantly upregulated LIF and HOXA10 expression in endometrium from rats with endometriosis. The inhibitory effect of metformin on the growth of endometriotic implants, VEGF and MMP-9, and upregulating effect on LIF and HOXA10, was optimal at a dose of 100 mg/kg/d. Conclusion: Our in vivo data demonstrates that metformin treatment alleviates endometriosis and potentiates endometrial receptivity. The underlying mechanisms are associated with decreased expression of VEGF and MMP-9 genes and upregulation of the LIF and HOXA10 genes. The effect of metformin was optimal at 100 mg/kg/d. These findings provide a potential alternative for women with endometriosis with the potential to increase fertility. Metformin is an approved drug by FDA for diabetes and this study may add another potential clinical use for metformin.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Chunyang Li
- Department of Biochemistry, School of Basic Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingfen Ying
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianqin Qu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Xueqiong Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Abstract
OBJECTIVE To evaluate the potential changes in the plasma levels of resolvin D1 (RvD1) in patients with trauma and hemorrhage. Having found that trauma results in a profound reduction in plasma RvD1 in patients, we have then investigated the effects of RvD1 on the organ injury and dysfunction associated with hemorrhagic shock (HS) in the rat. BACKGROUND HS is a common cause of death in trauma due to excessive systemic inflammation and multiple organ failure. RvD1 is a member of the resolvin family of pro-resolution mediators. METHODS Blood samples were drawn from critically injured patients (n = 27, ACITII-prospective observational cohort study) within 2 hours of injury for targeted liquid chromatography tandem mass spectrometry. HS rats (removal of blood to reduce arterial pressure to 30 ± 2 mm Hg, 90 minutes, followed by resuscitation) were treated with RvD1 (0.3 or 1 μg/kg intravenous (i.v.)) or vehicle (n = 7). Parameters of organ injury and dysfunction were determined. RESULTS Plasma levels of RvD1 (mg/dL) were reduced in patients with trauma+HS (0.17 ± 0.08) when compared with healthy volunteers (0.76 ± 0.25) and trauma patients (0.62 ± 0.20). In rats with HS, RvD1 attenuated the kidney dysfunction, liver injury, and tissue ischemia. RvD1 also reduced activation of the nuclear factor (NF)-κB pathway and reduced the expression of pro-inflammatory proteins such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, and interleukin-6. CONCLUSION Plasma RvD1 is reduced in patients with trauma-HS. In rats with HS, administration of synthetic RvD1 on resuscitation attenuated the multiple organ failure associated with HS by a mechanism that involves inhibition of the activation of NF-κB.
Collapse
|
10
|
de Fáveri C, Fermino PMP, Piovezan AP, Volpato LK. The Inflammatory Role of Pro-Resolving Mediators in Endometriosis: An Integrative Review. Int J Mol Sci 2021; 22:4370. [PMID: 33922064 PMCID: PMC8122439 DOI: 10.3390/ijms22094370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of endometriosis is still controversial, although it is known that the inflammatory immune response plays a critical role in this process. The resolution of inflammation is an active process where the activation of endogenous factors allows the host tissue to maintain homeostasis. The mechanisms by which pro-resolving mediators (PRM) act in endometriosis are still little explored. Thus, this integrative review aims to synthesize the available content regarding the role of PRM in endometriosis. Experimental and in vitro studies with Lipoxin A4 demonstrate a potential inhibitory effect on endometrial lesions' progression, attenuating pro-inflammatory and angiogenic signals, inhibiting proliferative and invasive action suppressing intracellular signaling induced by cytokines and estradiol, mainly through the FPR2/ALX. Investigations with Resolvin D1 demonstrated the inhibition of endometrial lesions and decreased pro-inflammatory factors. Annexin A1 is expressed in the endometrium and is specifically present in women with endometriosis, although the available studies are still inconsistent. Thus, we believe there is a gap in knowledge regarding the PRM pathways in patients with endometriosis. It is important to note that these substances' therapeutic potential is evident since the immune and abnormal inflammatory responses play an essential role in endometriosis development and progression.
Collapse
Affiliation(s)
- Cássia de Fáveri
- Medical Residency Program in Ginecology and Obstetric, Hospital Regional Dr. Homero Miranda Gomes, São José 88103-901, Brazil;
| | - Paula M. Poeta Fermino
- Department Curso de Medicina, Campus Pedra Branca, Undergraduate Medical School, Universidade Sul de Santa Catarina—UNISUL, Palhoça 88137-272, Brazil;
| | - Anna P. Piovezan
- Postgraduate Studies in Health Science Program, Universidade do Sul de Santa Catarina—UNISUL, Palhoça 88137-272, Brazil;
| | - Lia K. Volpato
- Postgraduate Studies in Health Science Program, Universidade do Sul de Santa Catarina—UNISUL, Palhoça 88137-272, Brazil;
- Ginecology and Obstetric Department, Hospital Regional Dr. Homero Miranda Gomes, São José 88103-901, Brazil
| |
Collapse
|
11
|
Nagayasu M, Imanaka S, Kimura M, Maruyama S, Kobayashi H. Nonhormonal Treatment for Endometriosis Focusing on Redox Imbalance. Gynecol Obstet Invest 2021; 86:1-12. [PMID: 33395684 DOI: 10.1159/000512628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
The aim of this review is to investigate the oxidant/antioxidant status and its regulatory mechanisms in patients with endometriosis and to summarize the antioxidant therapy as an alternative to hormonal therapy for endometriosis. Each keyword alone or in combination was used to search from PubMed and Embase by applying the filters of the title and the publication years between January 2000 and March 2020. Endometriosis is a chronic inflammatory disease characterized by repeated episodes of hemorrhage. Methemoglobin in repeated hemorrhage produces large amounts of superoxide anion via the autoxidation of hemoglobin. Excessive free-radical production causes redox imbalance, leading to inadequate antioxidant defenses and damage to endometrial cells, but may contribute to endometrial cell growth and survival through activation of various signaling pathways. In addition, to overcome excessive oxidative stress, estradiol participates in the induction of antioxidants such as superoxide dismutase in mitochondria. Several antioxidants that suppress free radicals may be effective in endometriosis-related pain. We searched for 23 compounds and natural substances that could reduce the pain caused by superoxide/reactive oxygen species in basic research and animal models. Next, we built a list of 16 drugs that were suggested to be effective against endometriosis other than hormone therapy in preclinical studies and clinical trials. Of the 23 and 16 drugs, 4 overlapping drugs could be potential candidates for clinically reducing endometriosis-related pain caused by superoxide anion/reactive oxygen species. These drugs include polyphenols (resveratrol and polydatin), dopamine agonists (cabergoline), and statins (simvastatin). However, no randomized controlled trials have evaluated the efficacy of these drugs. In conclusion, this review summarizes the following 2 points: superoxide anion generation by methemoglobin is enhanced in endometriosis, resulting in redox imbalance; and some compounds and natural substances that can suppress free radicals may be effective in endometriosis-related pain. Further randomized clinical trials based on larger series are mandatory to confirm the promising role of antioxidants in the nonhormonal management of endometriosis.
Collapse
Affiliation(s)
- Mika Nagayasu
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Mai Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sachiyo Maruyama
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan, .,Ms.Clinic MayOne, Kashihara, Japan,
| |
Collapse
|
12
|
Long Q, Liu X, Guo SW. Early maternal separation accelerates the progression of endometriosis in adult mice. Reprod Biol Endocrinol 2020; 18:63. [PMID: 32532293 PMCID: PMC7291455 DOI: 10.1186/s12958-020-00600-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A large body of research highlights the importance of early-life environmental impact on the health outcome in adulthood. However, whether early-life adversity (ELA) has any impact on the development of endometriosis is completely unclear. In this study, we tested the hypothesis that ELA, as manifested by neonatal separation, can accelerate the progression of endometriosis in mouse through activation of the adrenergic receptor β2 (ADRB2) signaling pathway, leading to increased angiogenesis and progression of endometriotic lesions. METHODS Eight female Balb/C mice, in late pregnancy, were used used for this study, which later gave birth to 22 female newborn pubs. Eleven additional female Balb/C mice were also used as donors of uterine tissues. The 22 newborn pubs were randomly divided into 2 equal-sized groups, maternal separation (MS) and no separation (NS). Pubs in the MS group were separated from their dams for 3 h/day from postnatal day (PND) 1 to 21, while those in the NS control remained in the home cage with their dams. In adulthood (8-week old), 3 mice in each group were randomly selected to undergo a battery of behavior tests. The remaining 8 mice in each group were induced with endometriosis by intraperitoneal injection of uterine fragments from donor mice. Four weeks after the induction, all mice were sacrificed and their endometriotic lesions were excised for quantification and then prepared for immunohistochemistry analysis. RESULTS We confirmed that MS during infancy resulted in anxiety and depression-like behaviors as previously reported. We also found that in MS mice the lesion weight was increased by over 2 folds and generalized hyperalgesia was also significantly increased as compared with NS mice. Immunostaining analysis demonstrated that MS accelerated the development of endometriosis likely through decreased dopamine receptor D2 (DRD2) expression and activation of the ADRB2/cAMP-response element binding protein (CREB) signaling pathway, leading to increased angiogenesis and progression of endometriotic lesions. CONCLUSIONS Exposure of female mouse pups to ELA such as MS during their infancy period accelerates the progression of endometriosis, possibly through altered neuronal wiring and hyperactivity of the hypothalamic-pituitary-adrenal axis.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Animals, Newborn
- Anxiety/psychology
- Behavior, Animal
- Cyclic AMP Response Element-Binding Protein/metabolism
- Depression/psychology
- Disease Models, Animal
- Disease Progression
- Endometriosis/metabolism
- Endometriosis/pathology
- Endometriosis/physiopathology
- Endometriosis/psychology
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Hyperalgesia/psychology
- Hypothalamo-Hypophyseal System/metabolism
- Injections, Intraperitoneal
- Maternal Deprivation
- Mice, Inbred BALB C
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Peritoneal Diseases/metabolism
- Peritoneal Diseases/pathology
- Peritoneal Diseases/physiopathology
- Peritoneal Diseases/psychology
- Pituitary-Adrenal System/metabolism
- Random Allocation
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Dopamine D2/metabolism
- Signal Transduction
- Uterus/transplantation
- Stress, Psychological
Collapse
Affiliation(s)
- Qiqi Long
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
- Shanghai Obstetrics and Gynecology Hospital, Fudan University Shanghai College of Medicine, 419 Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
13
|
Zahoor I, Giri S. Specialized Pro-Resolving Lipid Mediators: Emerging Therapeutic Candidates for Multiple Sclerosis. Clin Rev Allergy Immunol 2020; 60:147-163. [PMID: 32495237 DOI: 10.1007/s12016-020-08796-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease in which unresolved and uncontrolled inflammation disrupts normal cellular homeostasis and leads to a pathological disease state. It has long been recognized that endogenously derived metabolic by-products of omega fatty acids, known as specialized pro-resolving lipid mediators (SPMs), are instrumental in resolving the pathologic inflammation. However, there is minimal data available on the functional status of SPMs in MS, despite the fact that MS presents a classical model of chronic inflammation. Studies to date indicate that dysfunction of the SPM biosynthetic pathway is responsible for their altered levels in patient-derived biofluids, which contributes to heightened inflammation and disease severity. Collectively, current findings suggest the contentious role of SPMs in MS due to variable outcomes in biological matrices across studies conducted so far, which could, in part, also be attributed to differences in population characteristics. It seems that SPMs have neuroprotective action on MS by exerting proresolving effects on brain microglia in its preclinical model; however, there are no reports demonstrating the direct effect of SPMs on oligodendrocytes or neurons. This reveals that "one size does not fit all" notion holds significance for MS in terms of the status of SPMs in other inflammatory conditions. The lack of clarity served as the impetus for this review, which is the first of its kind to summarize the relevant data regarding the role of SPMs in MS and the potential to target them for biomarker development and future alternative therapies for this disease. Understanding the mechanisms behind biological actions of SPMs as resolution mediators may prevent or even cure MS and other neurodegenerative pathologies.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Research Division, Education & Research Building, Henry Ford Hospital, Room 4023, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| | - Shailendra Giri
- Department of Neurology, Research Division, Education & Research Building, Henry Ford Hospital, Room 4051, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
14
|
Khajeh M, Nouri M, Ghasemzadeh A, Mehdizadeh A, Shanehbandi D, Yousefi S, Darabi M, Rahbarghazi R. Arachidonic acid alleviates the detrimental effects of acetylsalicylic acid on human granulosa cells performance in vitro. Mol Reprod Dev 2020; 87:607-619. [PMID: 32270588 DOI: 10.1002/mrd.23343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/21/2020] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
Here, we investigated the biological effects of arachidonic acid (AA) in human cumulus granulosa cells (CGCs) after exposure to ASA. Cells were isolated from the follicular fluid and incubated with 0.5 mM acetylsalicylic acid (ASA) and 50 µM AA. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. E2 and P4 levels were measured by chemiluminescence assay. Expression of genes including CYP19A1, FACN, and SCD1 was measured by real-time polymerase chain reaction assay. Oxidative status was analyzed by monitoring glutathione peroxidase activity. The fatty acid profile was analyzed by the gas chromatography technique. Enzyme-linked immunosorbent assay was used to measure prostaglandin E2 (PGE2 ) in CGCs after exposure to ASA and AA. Protein levels of the estrogen receptor were studied by immunofluorescence staining. Ultrastructural changes were evaluated by transmission electron microscopy imaging. ASA treatment reduced E2 production, Cyp19a1 expression, glutathione peroxidase (GPx) activity, and estradiol receptor expression in CGCs. The addition of AA prevented the ASA-induced E2 reduction (p < .05) and expression of Cyp19a1. Moreover, AA increased the antioxidant capacity of CGCs exposed to ASA by promoting GPx activity (p < .05). AA increased monounsaturated fatty acid/saturated fatty acid ratio compared with the ASA group (p < .05). AA supplementation triggered the synthesis and secretion of PGE2 in ASA-treated CGCS (p < .05). Cytoplasmic vacuolation observed in the ASA group and treatment with AA intensified vacuolation rate. The expression of the estrogen receptor was increased after AA supplementation. Data demonstrated that AA decreased the detrimental effects of ASA on human CGCs after 72 hr.
Collapse
Affiliation(s)
- Masoumeh Khajeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aalie Ghasemzadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Abokhrais IM, Denison FC, Whitaker LHR, Saunders PTK, Doust A, Williams LJ, Horne AW. A two-arm parallel double-blind randomised controlled pilot trial of the efficacy of Omega-3 polyunsaturated fatty acids for the treatment of women with endometriosis-associated pain (PurFECT1). PLoS One 2020; 15:e0227695. [PMID: 31951599 PMCID: PMC6968860 DOI: 10.1371/journal.pone.0227695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Endometriosis is defined by the presence of endometrial-like tissue (lesions) outside the uterus, commonly on the pelvic peritoneum. It affects 6–10% of women and is associated with debilitating pelvic pain. Current management options are often unsatisfactory. Omega-3 polyunsaturated fatty acids (O-PUFA) have the potential to reduce the painful symptoms associated with endometriosis, reduce lesion size, preserve the patient’s ability to conceive, and have minimal side effects. We performed a two-arm, parallel double-blinded randomised controlled trial to inform the planning of a future multicentre randomised controlled trial to evaluate the efficacy of O-PUFA for endometriosis-associated pain. Objectives The primary objectives of the trial were to assess recruitment and retention rates. The secondary objectives were to determine the acceptability to women of the proposed methods of recruitment, randomisation, treatments and questionnaires, to estimate the variability in the proposed primary endpoints to inform the sample size calculation and to refine the research methodology for the future definitive trial. Methods We recruited women with endometriosis from June 2016 to June 2017 and randomised them to eight weeks of treatment with O-PUFA or olive oil. Pain scores and quality of life questionnaires were collected at baseline and eight weeks. We calculated the proportion of eligible women randomised, and of randomised participants who were followed up to eight weeks. Acceptability questionnaires were used to evaluate women’s experiences of the trial. Results The proportion of eligible participants who were randomised was 45.2% (33/73) and 81.8% (27/33) completed the study. The majority of participants described their overall trial experience favourably and there were no adverse events in either group. Conclusion Our pilot trial supports the feasibility of a future larger trial to definitively evaluate the efficacy of O-PUFA for endometriosis-associated pain. Trial registration The trial was registered on the ISRCTN registry (registration number ISRCTN44202346).
Collapse
Affiliation(s)
- Ibtisam M. Abokhrais
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona C. Denison
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy H. R. Whitaker
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ann Doust
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Andrew W. Horne
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Yaribeygi H, Atkin SL, Simental-Mendía LE, Barreto GE, Sahebkar A. Anti-inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. J Cell Physiol 2019; 234:14873-14882. [PMID: 30746696 DOI: 10.1002/jcp.28315] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The incidence of diabetes mellitus is growing rapidly. The exact pathophysiology of diabetes is unclear, but there is increasing evidence of the role of the inflammatory response in both developing diabetes as well as its complications. Resolvins are naturally occurring polyunsaturated fatty acids that are found in fish oil and sea food that have been shown to possess anti-inflammatory actions in several tissues including the kidneys. The pathways by which resolvins exert this anti-inflammatory effect are unclear. In this review we discuss the evidence showing that resolvins can suppress inflammatory responses via at least five molecular mechanisms through inhibition of the nucleotide-binding oligomerization domain protein 3 inflammasome, inhibition of nuclear factor κB molecular pathways, improvement of oxidative stress, modulation of nitric oxide synthesis/release and prevention of local and systemic leukocytosis. Complete understanding of these molecular pathways is important as this may lead to the development of new effective therapeutic strategies for diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Simitsidellis I, Gibson DA, Saunders PTK. Animal models of endometriosis: Replicating the aetiology and symptoms of the human disorder. Best Pract Res Clin Endocrinol Metab 2018; 32:257-269. [PMID: 29779580 DOI: 10.1016/j.beem.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometriosis is a chronic incurable disorder that affects 1 in 10 women of reproductive age: associated symptoms include chronic pain and infertility. The aetiology of endometriosis remains poorly understood but patients, clinicians and researchers are all in agreement that new non-surgical therapies are urgently needed to reduce the severity of symptoms. Preclinical testing of drugs requires the development and validation of models that recapitulate the key features of the disorder. In this review we describe the best-validated animal models (primate, rodent, xenograft) and their contributions to our understanding of the factors underpinning the development of symptoms. We consider the evidence that these models have provided the platform for identification of new therapeutic interventions and reflect on future directions for research and drug validation.
Collapse
Affiliation(s)
- Ioannis Simitsidellis
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Douglas A Gibson
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Philippa T K Saunders
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
18
|
The G-Protein-Coupled Receptor ALX/Fpr2 Regulates Adaptive Immune Responses in Mouse Submandibular Glands. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1555-1562. [PMID: 29684359 DOI: 10.1016/j.ajpath.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 04/02/2018] [Indexed: 01/25/2023]
Abstract
Lipoxin receptor (ALX)/N-formyl peptide receptor (FPR)-2 is a G-protein-coupled receptor that has multiple binding partners, including the endogenous lipid mediators resolvin D1, lipoxin A4, and the Ca2+-dependent phospholipid-binding protein annexin A1. Previous studies have demonstrated that resolvin D1 activates ALX/Fpr2 to resolve salivary gland inflammation in the NOD/ShiLtJ mouse model of Sjögren syndrome. Moreover, mice lacking the ALX/Fpr2 display an exacerbated salivary gland inflammation in response to lipopolysaccharide. Additionally, activation of ALX/Fpr2 has been shown to be important for regulating antibody production in B cells. These previous studies indicate that ALX/Fpr2 promotes resolution of salivary gland inflammation while modulating adaptive immunity, suggesting the need for investigation of the role of ALX/Fpr2 in regulating antibody production and secretory function in mouse salivary glands. Our results indicate that aging female knockout mice lacking ALX/Fpr2 display a significant reduction in saliva flow rates and weight loss, an increased expression of autoimmune-associated genes, an up-regulation of autoantibody production, and increased CD20-positive B-cell population. Although not all effects were noted among the male knockout mice, the results nonetheless indicate that ALX/Fpr2 is clearly involved in the adaptive immunity and secretory function in salivary glands, with further investigation warranted to determine the cause(s) of these between-sex differences.
Collapse
|
19
|
Lippestad M, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Resolvin D1 Increases Mucin Secretion in Cultured Rat Conjunctival Goblet Cells via Multiple Signaling Pathways. Invest Ophthalmol Vis Sci 2017; 58:4530-4544. [PMID: 28892824 PMCID: PMC5595227 DOI: 10.1167/iovs.17-21914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Goblet cells in the conjunctiva secrete mucin into the tear film protecting the ocular surface. The proresolution mediator resolvin D1 (RvD1) regulates mucin secretion to maintain homeostasis during physiological conditions and in addition, actively terminates inflammation. We determined the signaling mechanisms used by RvD1 in cultured rat conjunctival goblet cells to increase intracellular [Ca2+] ([Ca2+]i) and induce glycoconjugate secretion. Methods Increase in [Ca2+]i were measured using fura 2/AM and glycoconjugate secretion determined using an enzyme-linked lectin assay with the lectin Ulex Europaeus Agglutinin 1. Signaling pathways activated by RvD1 were studied after goblet cells were pretreated with signaling pathway inhibitors before stimulation with RvD1. The results were compared with results when goblet cells were stimulated with RvD1 alone and percent inhibition calculated. Results The increase in [Ca2+]i stimulated by RvD1 was blocked by inhibitors to phospholipases (PL-) -D, -C, -A2, protein kinase C (PKC), extracellular signal-regulated kinases (ERK)1/2 and Ca2+/calmodulin-dependent kinase (Ca2+/CamK). Glycoconjugate secretion was significantly inhibited by PLD, -C, -A2, ERK1/2 and Ca2+/CamK, but not PKC. Conclusions We conclude that RvD1 increases glycoconjugate secretion from goblet cells via multiple signaling pathways including PLC, PLD, and PLA2, as well as their signaling components ERK1/2 and Ca2+/CamK to preserve the mucous layer and maintain homeostasis by protecting the eye from desiccating stress, allergens, and pathogens.
Collapse
Affiliation(s)
- Marit Lippestad
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Sommakia S, Baker OJ. Regulation of inflammation by lipid mediators in oral diseases. Oral Dis 2017; 23:576-597. [PMID: 27426637 PMCID: PMC5243936 DOI: 10.1111/odi.12544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
Abstract
Lipid mediators (LM) of inflammation are a class of compounds derived from ω-3 and ω-6 fatty acids that play a wide role in modulating inflammatory responses. Some LM possess pro-inflammatory properties, while others possess proresolving characteristics, and the class switch from pro-inflammatory to proresolving is crucial for tissue homeostasis. In this article, we review the major classes of LM, focusing on their biosynthesis and signaling pathways, and their role in systemic and, especially, oral health and disease. We discuss the detection of these LM in various body fluids, focusing on diagnostic and therapeutic applications. We also present data showing gender-related differences in salivary LM levels in healthy controls, leading to a hypothesis on the etiology of inflammatory diseases, particularly Sjögren's syndrome. We conclude by enumerating open areas of research where further investigation of LM is likely to result in therapeutic and diagnostic advances.
Collapse
Affiliation(s)
- Salah Sommakia
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Gu Z, Lamont GJ, Lamont RJ, Uriarte SM, Wang H, Scott DA. Resolvin D1, resolvin D2 and maresin 1 activate the GSK3β anti-inflammatory axis in TLR4-engaged human monocytes. Innate Immun 2016; 22:186-95. [PMID: 26878867 DOI: 10.1177/1753425916628618] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/31/2015] [Indexed: 01/08/2023] Open
Abstract
Pro-resolving, docosahexaenoic acid-derived mediators have recently emerged as important potential therapeutic agents for the amelioration of complications arising from inflammation, such as vascular disease, asthma, acute lung injury and colitis. While resolvin D1 (RVD1), resolvin D2 (RVD2) and maresin 1 (MaR1) are established pro-resolvins, their mechanisms of action remain unclear. Here we show that, in LPS-stimulated primary human monocytes, RVD1, RVD2 and MaR1 each suppress the release of pro-inflammatory cytokines (TNF, IL-1β, IL-8) and the innate/adaptive bridging cytokine, IL-12 p40, while simultaneously augmenting the production of the anti-inflammatory cytokine, IL-10. Such resolving activity is accompanied by the increased phosphorylation (enhanced anti-inflammatory state) of glycogen synthase kinase 3β (GSK3β) along with increased phosphorylation (activation) of Akt, SGK1 and CREB but not MAPK-related molecules. Gain and loss of function experiments confirm a key role for GSK3β and CREB in the anti-inflammatory actions of resolvins. These results suggest that induction of the GSK3β anti-inflammatory axis is a common mechanism of action for RVD1, RVD2 and MaR1.
Collapse
Affiliation(s)
- Zhen Gu
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Gwyneth J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA Department of Medicine, University of Louisville, KY, USA
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| |
Collapse
|