1
|
Wang Y, Wang Z, Chen B, Chen B, Fang R, Zeng H, Peng J, Gao Y, Hao L. Global epidemiology of lower limb fractures: Trends, burden, and projections from the GBD 2021 study. Bone 2025; 193:117420. [PMID: 39894291 DOI: 10.1016/j.bone.2025.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/22/2024] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Lower limb fractures are a significant global public health issue, imposing considerable social and economic burdens. Despite their prevalence, comprehensive analyses of the global epidemiology of lower limb fractures remain scarce. This study aims to address this gap. METHODS Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, we analyzed four types of lower limb fractures: fractures of foot bones excluding the ankle (FFB), hip fractures (FH), fractures of the patella, tibia or fibula, or ankle (FPTFA), and femur fractures excluding the femoral neck (FF), and conducted a detailed assessment of them. RESULTS FPTFA was the most burdensome fracture type, with Slovenia showing the highest age-standardized incidence rate (ASIR), and Saudi Arabia having the highest age-standardized prevalence rate (ASPR) and years lived with disability rate (ASYR). The burden of lower limb fractures increased with age, but FFB and FPTFA showed a "double peak" age distribution, with FFB most common in the 20-24 age group. Lower limb fractures were more prevalent in males among younger individuals and in females among older populations. From 1990 to 2021, the burden of lower limb fractures, excluding FH, decreased (EAPC <1), though the incidence of FF is projected to increase (EAPC = 0.14, 95 % CI 0.1-0.18) over the next decade. CONCLUSION Although the global burden of lower limb fractures, excluding FH, has decreased in recent years, vigilance is still needed. Given the projected rise in FF incidence over the next decade, preventive measures should be implemented early.
Collapse
Affiliation(s)
- Yunfa Wang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China
| | - Zhilin Wang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China
| | - Bin Chen
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China
| | - Bofan Chen
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China
| | - Ruiying Fang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China
| | - Haimin Zeng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China
| | - Yuan Gao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO. 1 Minde Road, Nanchang, Jiangxi, China; Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi 330006, China; Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi 330006, China.
| |
Collapse
|
2
|
Sanjeev K, Guruprasad M, Vikram R, Priyadarshini S, Mazumder A, Inderchand M. Uterine Biosynthesis through Tissue Engineering: An Overview of Current Methods and Status. Curr Pharm Biotechnol 2025; 26:208-221. [PMID: 39161137 DOI: 10.2174/0113892010316780240807104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
In the last few decades, the rates of infertility among women have been on the rise, usually due to complications with the uterus and related tissue. A wide variety of reasons can cause uterine factor infertility and can be congenital or a result of disease. Uterine transplantation is currently used as a means to enable women with fertility issues to have a natural birth. However, multiple risk factors are involved in uterine transplantation that threaten the lives of the growing fetus and the mother, as a result of which the procedure is not prominently practiced. Uterine tissue engineering provides a potential solution to infertility through the regeneration of replacement of damaged tissue, thus allowing healing and restoration of reproductive capacity. It involves the use of stem cells from the patient incorporated within biocompatible scaffolds to regenerate the entire tissue. This manuscript discusses the need for uterine tissue engineering, giving an overview of the biological and organic material involved in the process. There are numerous existing animal models in which this procedure has been actualized, and the observations from them have been compiled here. These models are used to develop a further understanding of the integration of engineered tissues and the scope of tissue engineering as a treatment for uterine disorders. Additionally, this paper examines the scope and limitations of the procedure.
Collapse
Affiliation(s)
- Krithika Sanjeev
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Megaswana Guruprasad
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rachna Vikram
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Snigdha Priyadarshini
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Adhish Mazumder
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Manjubala Inderchand
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Yuan R, Li J. Role of macrophages and their exosomes in orthopedic diseases. PeerJ 2024; 12:e17146. [PMID: 38560468 PMCID: PMC10979751 DOI: 10.7717/peerj.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes are vesicles with a lipid bilayer structure that carry various active substances, such as proteins, DNA, non-coding RNA, and nucleic acids; these participate in the immune response, tissue formation, and cell communication. Owing to their low immunogenicity, exosomes play a key role in regulating the skeletal immune environment. Macrophages are important immune cells that swallow various cellular and tissue fragments. M1-like and M2-like macrophages differentiate to play pro-inflammatory, anti-inflammatory, and repair roles following stimulation. In recent years, the increase in the population base and the aging of the population have led to a gradual rise in orthopedic diseases, placing a heavy burden on the social medical system and making it urgent to find effective solutions. Macrophages and their exosomes have been demonstrated to be closely associated with the pathogenesis and prognosis of orthopedic diseases. An in-depth understanding of their mechanisms of action and the interaction between them will be helpful for the future clinical treatment of orthopedic diseases. This review focuses on the mechanisms of action, diagnosis, and treatment of orthopedic diseases involving macrophages and their exosomes, including fracture healing, diabetic bone damage, osteosarcoma, and rheumatoid arthritis. In addition, we discuss the prospects and major challenges faced by macrophages and their exosomes in clinical practice.
Collapse
Affiliation(s)
- Riming Yuan
- Shengjing Hospital, China Medical University, Shenyang, China
| | - Jianjun Li
- Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Wu S, Ye Z, Yan Y, Zhan X, Ren L, Zhou C, Chen T, Yao Y, Zhu J, Wu S, Ma F, Liu L, Fan B, Liu C. The causal relationship between autoimmune diseases and osteoporosis: a study based on Mendelian randomization. Front Endocrinol (Lausanne) 2023; 14:1196269. [PMID: 37693362 PMCID: PMC10484226 DOI: 10.3389/fendo.2023.1196269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
Objective The relationship between different autoimmune diseases and bone mineral density (BMD) and fractures has been reported in epidemiological studies. This study aimed to explore the causal relationship between autoimmune diseases and BMD, falls, and fractures using Mendelian randomization (MR). Methods The instrumental variables were selected from the aggregated statistical data of these diseases from the largest genome-wide association study in Europe. Specifically, 12 common autoimmune diseases were selected as exposure. Outcome variables included BMD, falls, and fractures. Multiple analysis methods were utilized to comprehensively evaluate the causal relationship between autoimmune diseases and BMD, falls, and fractures. Additionally, sensitivity analyses, including Cochran's Q test, MR-Egger intercept test, and one analysis, were conducted to verify the result's reliability. Results Strong evidence was provided in the results of the negatively association of ulcerative colitis (UC) with forearm BMD. UC also had a negatively association with the total body BMD, while inflammatory bowel disease (IBD) depicted a negatively association with the total body BMD at the age of 45-60 years. Horizontal pleiotropy or heterogeneity was not detected through sensitivity analysis, indicating that the causal estimation was reliable. Conclusion This study shows a negative causal relationship between UC and forearm and total body BMD, and between IBD and total body BMD at the age of 45-60 years. These results should be considered in future research and when public health measures and osteoporosis prevention strategies are formulated.
Collapse
Affiliation(s)
- Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Ye
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Yan
- Department of Operating Room, Taixing People’s Hospital, Taixing, China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liang Ren
- Reproductive Medicine Center, The First Afliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanlin Yao
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siling Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fengzhi Ma
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binguang Fan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Li D, Zhou J, Zhang M, Ma Y, Yang Y, Han X, Wang X. Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Biomater Sci 2020; 8:3138-3146. [PMID: 32352105 DOI: 10.1039/d0bm00376j] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pharmacotherapy for hypercalcemia, which is mainly caused by osteoporosis, is an effective method to regulate the in vivo calcium equilibrium. From this perspective, the development of a minimally invasive gelling system for the prolonged local delivery of bisphosphonates has practical significance in the clinical therapy of bone osteoporosis. Here, a biocompatible and injectable hydrogel based on a uniform tetra-PEG network carrying a PEG-modified alendronate (ALN) prodrug for the localized elution and long-term sustained release of anti-osteoporotic small molecule drugs is reported. The obtained ALN-based tetra-PEG hydrogels exhibit rapid gel formation and excellent injectability, thereby allowing for the easy injection and consequent adaptation of hydrogels into the bone defects with irregular shapes, which promotes the ALN-based tetra-PEG hydrogels with depot formulation capacity for governing the on-demand release of ALN drugs and local reinforcement of bone osteoporosis at the implantation sites of animals. The findings imply that these injectable hydrogels mediate the optimized release of therapeutic cargoes and effectively promote in situ bone regeneration via minimally invasive procedures, which is effective for clinical osteoporosis therapy.
Collapse
Affiliation(s)
- Dawei Li
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|