1
|
Bozhinovski G, Terzikj M, Kubelka-Sabit K, Plaseska-Karanfilska D. Delineation of Partial Chromosomal Abnormalities in Early Pregnancy Losses. Balkan J Med Genet 2024; 27:23-32. [PMID: 40070857 PMCID: PMC11892934 DOI: 10.2478/bjmg-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Pregnancy loss (PL), particularly early pregnancy loss (EPL), is a prevalent reproductive complication, with approximately 15% of confirmed pregnancies affected. Chromosomal abnormalities are implicated in more than half of EPLs, with trisomies being the most prevalent. Partial abnormalities, including segmental deletions, duplications, and unbalanced translocations, are detected in up to 10% of EPL cases. This study focuses on the precise characterization of partial chromosomal abnormalities, previously identified by Quantitative fluorescent polymerase chain reaction (QF-PCR) and multiplex ligation probe amplification (MLPA) analyses. By employing an array comparative genomic hybridization (aCGH), we analyzed 20 EPL samples, identifying 32 partial chromosomal abnormalities, including 18 deletions and 14 duplications, with an average size of 33.2 Mb. Notably, two abnormalities previously undetected by QF-PCR and MLPA were revealed (deletions in 7q36, and 1p36.32p36.31regions), emphasizing the necessity of high-resolution genomic tools. Chromosomes 1, 18, and 13 emerged as frequently involved, aligning with previous associations with recurrent pregnancy loss. Recurrent abnormalities were identified in six chromosomal regions, with chromosome 1p36.33-p36.32 exhibiting the highest frequency. Gene Ontology (GO) enrichment analysis of recurrent regions highlighted disruptions in critical biological processes, including molecular binding, enzymatic activity, and cellular development. Many genes in these regions are linked to multisystem syndromes, suggesting their involvement in early embryonic development and pregnancy viability. Our findings underscore the complexity of EPL's genetic landscape, demonstrating that large CNVs, may disrupt multiple genes critical for development. Although, subtelo-meric MLPA reliably detects telomeric partial chromosomal abnormalities in EPLs, aCGH is essential for detection and precise characterization of all CNVs, thus enhancing diagnostic and counseling strategies in affected couples.
Collapse
Affiliation(s)
- Gj Bozhinovski
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia, Skopje, North Macedonia
| | - M Terzikj
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia, Skopje, North Macedonia
| | - K Kubelka-Sabit
- Clinical Hospital “Acibadem Sistina“, Skopje, North Macedonia
- Faculty of Medical Sciences, University ”Goce Delcev”, Stip, North Macedonia
| | - D Plaseska-Karanfilska
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia, Skopje, North Macedonia
| |
Collapse
|
2
|
Kalisch-Smith JI, Ehtisham-Uddin N, Rodriguez-Caro H. Feto-placental and coronary endothelial genes implicated in miscarriage, congenital heart disease and stillbirth, a systematic review and meta-analysis. Placenta 2024; 156:55-66. [PMID: 39276426 DOI: 10.1016/j.placenta.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The first trimester placenta is very rarely investigated for placental vascular formation in developmental or diseased contexts. Defects in placental formation can cause heart defects in the fetus, and vice versa. Determining the causality is therefore difficult as both organs develop concurrently and express many of the same genes. Here, we performed a systematic review to determine feto-placental and coronary endothelial genes implicated in miscarriages, stillbirth and congenital heart defects (CHD) from human genome wide screening studies. 4 single cell RNAseq datasets from human first/early second trimester cardiac and placental samples were queried to generate a list of 1187 endothelial genes. This broad list was cross-referenced with genes implicated in the pregnancy disorders above. 39 papers reported feto-placental and cardiac coronary endothelial genes, totalling 612 variants. Vascular gene variants were attributed to the incidence of miscarriage (8 %), CHD (4 %) and stillbirth (3 %). The most common genes for CHD (NOTCH, DST, FBN1, JAG1, CHD4), miscarriage (COL1A1, HERC1), and stillbirth (AKAP9, MYLK), were involved in blood vessel and cardiac valve formation, with roles in endothelial differentiation, angiogenesis, extracellular matrix signaling, growth factor binding and cell adhesion. NOTCH1, AKAP12, CHD4, LAMC1 and SOS1 showed greater relative risk ratios with CHD. Many of the vascular genes identified were expressed highly in both placental and heart EC populations. Both feto-placental and cardiac vascular genes are likely to result in poor endothelial cell development and function during human pregnancy that leads to higher risk of miscarriage, congenital heart disease and stillbirth.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK.
| | - Nusaybah Ehtisham-Uddin
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK
| | - Helena Rodriguez-Caro
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK; Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
3
|
Long N, Sun RL, Lai QH, Lu MY, Li XH, Chen YN, Zhu DY. HOTAIR/miR-1277-5p/FBN2 signaling axis is involved in recurrent spontaneous abortion by regulating the growth, migration, and invasion of HTR-8/SVneo cells†. Biol Reprod 2024; 111:135-147. [PMID: 38401166 DOI: 10.1093/biolre/ioae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 02/23/2024] [Indexed: 02/26/2024] Open
Abstract
OBJECTIVE This study aimed to explore the specific pathways by which HOX transcript antisense intergenic RNA contributes to the pathogenesis of unexplained recurrent spontaneous abortion. METHODS Real-time quantitative PCR was employed to assess the differential expression levels of HOX transcript antisense intergenic RNA in chorionic villi tissues from unexplained recurrent spontaneous abortion patients and women with voluntarily terminated pregnancies. HTR-8/SVneo served as a cellular model. Knockdown and overexpression of HOX transcript antisense intergenic RNA in the cells were achieved through siRNA transfection and pcDNA3.1 transfection, respectively. Cell viability, migration, and invasion were evaluated using cell counting kit-8, scratch, and Transwell assays, respectively. The interaction among the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 axis was predicted through bioinformatics analysis and confirmed through in vitro experiments. Furthermore, the regulatory effects of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis on cellular behaviors were validated in HTR-8/SVneo cells. RESULTS We found that HOX transcript antisense intergenic RNA was downregulated in chorionic villi tissues from unexplained recurrent spontaneous abortion patients. Overexpression of HOX transcript antisense intergenic RNA significantly enhanced the viability, migration, and invasion of HTR-8/SVneo cells, while knockdown of HOX transcript antisense intergenic RNA had the opposite effects. We further confirmed the regulatory effect of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis in unexplained recurrent spontaneous abortion. Specifically, HOX transcript antisense intergenic RNA and fibrillin 2 were found to reduce the risk of unexplained recurrent spontaneous abortion by enhancing cell viability, migration, and invasion, whereas miR-1277-5p exerted the opposite effects. CONCLUSION HOX transcript antisense intergenic RNA promotes unexplained recurrent spontaneous abortion development by targeting inhibition of miR-1277-5p/fibrillin 2 axis.
Collapse
Affiliation(s)
- Na Long
- Department of Reproductive Health, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Ru-Liang Sun
- Department of Pathology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Qing-Hua Lai
- Department of Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Mei-Yin Lu
- Department of Sample Library, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Hong Li
- Department of Reproductive Health, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Yan-Na Chen
- Department of Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Dong-Yan Zhu
- Department of Sample Library, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
DiAdamo A, Chai H, Chong ML, Wang G, Wen J, Jiang YH, Li P. Patterns of Cytogenomic Findings from a Case Series of Recurrent Pregnancy Loss Provide Insight into the Extent of Genetic Defects Causing Miscarriages. Glob Med Genet 2024; 11:123-131. [PMID: 38560483 PMCID: PMC10980555 DOI: 10.1055/s-0044-1785227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Background A retrospective study was performed to evaluate the patterns of cytogenomic findings detected from a case series of products of conception (POC) in recurrent pregnancy loss (RPL) over a 16-year period from 2007 to 2023. Results This case series of RPL was divided into a single analysis (SA) group of 266 women and a consecutive analysis (CA) group of 225 women with two to three miscarriages analyzed. Of the 269 POC from the SA group and the 469 POC from the CA group, a spectrum of cytogenomic abnormalities of simple aneuploidies, compound aneuploidies, polyploidies, and structural rearrangements/pathogenic copy number variants (pCNVs) were detected in 109 (41%) and 160 cases (34%), five (2%) and 11 cases (2%), 35 (13%) and 36 cases (8%), and 10 (4%) and 19 cases (4%), respectively. Patterns with recurrent normal karyotypes, alternating normal and abnormal karyotypes, and recurrent abnormal karyotypes were detected in 74 (33%), 71 (32%), and 80 (35%) of consecutive miscarriages, respectively. Repeat aneuploidies of monosomy X and trisomy 16, triploidy, and tetraploidy were detected in nine women. Conclusions A comparable spectrum of cytogenomic abnormalities was noted in the SA and CA groups of RPL. A skewed likelihood of 2/3 for recurrent normal and abnormal karyotypes and 1/3 for alternating normal and abnormal karyotypes in consecutive miscarriages was observed. Routine cytogenetic analysis should be performed for consecutive miscarriages. Further genomic sequencing to search for detrimental and embryonic lethal variants causing miscarriages and pathogenic variants inducing aneuploidies and polyploidies should be considered for RPL with recurrent normal and abnormal karyotypes.
Collapse
Affiliation(s)
- Autumn DiAdamo
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Hongyan Chai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Mei Ling Chong
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Guilin Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
- Yale Center for Genome Analysis, New Haven, Connecticut, United States
| | - Jiadi Wen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
- Yale Center for Genomic Health, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
- Yale Center for Genomic Health, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
5
|
Turner N, Abeysinghe P, Flay H, Meier S, Sadowski P, Mitchell MD. SWATH-MS Analysis of Blood Plasma and Circulating Small Extracellular Vesicles Enables Detection of Putative Protein Biomarkers of Fertility in Young and Aged Dairy Cows. J Proteome Res 2023; 22:3580-3595. [PMID: 37830897 DOI: 10.1021/acs.jproteome.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The development of biomarkers of fertility could provide benefits for the genetic improvement of dairy cows. Circulating small extracellular vesicles (sEVs) show promise as diagnostic or prognostic markers since their cargo reflects the metabolic state of the cell of origin; thus, they mirror the physiological status of the host. Here, we employed data-independent acquisition mass spectrometry to survey the plasma and plasma sEV proteomes of two different cohorts of Young (Peripubertal; n = 30) and Aged (Primiparous; n = 20) dairy cows (Bos taurus) of high- and low-genetic merit of fertility and known pregnancy outcomes (ProteomeXchange data set identifier PXD042891). We established predictive models of fertility status with an area under the curve of 0.97 (sEV; p value = 3.302e-07) and 0.95 (plasma; p value = 6.405e-08). Biomarker candidates unique to high-fertility Young cattle had a sensitivity of 0.77 and specificity of 0.67 (*p = 0.0287). Low-fertility biomarker candidates uniquely identified in sEVs from Young and Aged cattle had a sensitivity and specificity of 0.69 and 1.0, respectively (***p = 0.0005). Our bioinformatics pipeline enabled quantification of plasma and circulating sEV proteins associated with fertility phenotype. Further investigations are warranted to validate this research in a larger population, which may lead to improved classification of fertility status in cattle.
Collapse
Affiliation(s)
- Natalie Turner
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| | - Pevindu Abeysinghe
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| | - Holly Flay
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - Susanne Meier
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - Pawel Sadowski
- Central Analytical Research Facility (CARF), QUT, Gardens Point Campus, 2 George Street, Brisbane City, Queensland 4000, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, Queensland 4101, Australia
| |
Collapse
|
6
|
Workalemahu T, Avery C, Lopez S, Blue NR, Wallace A, Quinlan AR, Coon H, Warner D, Varner MW, Branch DW, Jorde LB, Silver RM. Whole-genome sequencing analysis in families with recurrent pregnancy loss: A pilot study. PLoS One 2023; 18:e0281934. [PMID: 36800380 PMCID: PMC9937472 DOI: 10.1371/journal.pone.0281934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
One to two percent of couples suffer recurrent pregnancy loss and over 50% of the cases are unexplained. Whole genome sequencing (WGS) analysis has the potential to identify previously unrecognized causes of pregnancy loss, but few studies have been performed, and none have included DNA from families including parents, losses, and live births. We conducted a pilot WGS study in three families with unexplained recurrent pregnancy loss, including parents, healthy live births, and losses, which included an embryonic loss (<10 weeks' gestation), fetal deaths (10-20 weeks' gestation) and stillbirths (≥ 20 weeks' gestation). We used the Illumina platform for WGS and state-of-the-art protocols to identify single nucleotide variants (SNVs) following various modes of inheritance. We identified 87 SNVs involving 75 genes in embryonic loss (n = 1), 370 SNVs involving 228 genes in fetal death (n = 3), and 122 SNVs involving 122 genes in stillbirth (n = 2). Of these, 22 de novo, 6 inherited autosomal dominant and an X-linked recessive SNVs were pathogenic (probability of being loss-of-function intolerant >0.9), impacting known genes (e.g., DICER1, FBN2, FLT4, HERC1, and TAOK1) involved in embryonic/fetal development and congenital abnormalities. Further, we identified inherited missense compound heterozygous SNVs impacting genes (e.g., VWA5B2) in two fetal death samples. The variants were not identified as compound heterozygous SNVs in live births and population controls, providing evidence for haplosufficient genes relevant to pregnancy loss. In this pilot study, we provide evidence for de novo and inherited SNVs relevant to pregnancy loss. Our findings provide justification for conducting WGS using larger numbers of families and warrant validation by targeted sequencing to ascertain causal variants. Elucidating genes causing pregnancy loss may facilitate the development of risk stratification strategies and novel therapeutics.
Collapse
Affiliation(s)
- Tsegaselassie Workalemahu
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Cecile Avery
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Sarah Lopez
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Nathan R. Blue
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
- Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, Utah, United States of America
| | - Amelia Wallace
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
| | - Hilary Coon
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, United States of America
| | - Derek Warner
- DNA Sequencing Core, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael W. Varner
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
- Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, Utah, United States of America
| | - D. Ware Branch
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
- Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, Utah, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Robert M. Silver
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
- Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
7
|
Nikitina TV, Lebedev IN. Stem Cell-Based Trophoblast Models to Unravel the Genetic Causes of Human Miscarriages. Cells 2022; 11:1923. [PMID: 35741051 PMCID: PMC9221414 DOI: 10.3390/cells11121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Miscarriage affects approximately 15% of clinically recognized pregnancies, and 1-3% of couples experience pregnancy loss recurrently. Approximately 50-60% of miscarriages result from chromosomal abnormalities, whereas up to 60% of euploid recurrent abortions harbor variants in candidate genes. The growing number of detected genetic variants requires an investigation into their role in adverse pregnancy outcomes. Since placental defects are the main cause of first-trimester miscarriages, the purpose of this review is to provide a survey of state-of-the-art human in vitro trophoblast models that can be used for the functional assessment of specific abnormalities/variants implicated in pregnancy loss. Since 2018, when primary human trophoblast stem cells were first derived, there has been rapid growth in models of trophoblast lineage. It has been found that a proper balance between self-renewal and differentiation in trophoblast progenitors is crucial for the maintenance of pregnancy. Different responses to aneuploidy have been shown in human embryonic and extra-embryonic lineages. Stem cell-based models provide a powerful tool to explore the effect of a specific aneuploidy/variant on the fetus through placental development, which is important, from a clinical point of view, for deciding on the suitability of embryos for transfer after preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Tatiana V. Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia;
| | | |
Collapse
|
8
|
Karipcin S, Wei S, Williams Z. Getting to the point (mutation). Fertil Steril 2021; 116:1359. [PMID: 34602259 DOI: 10.1016/j.fertnstert.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Sinem Karipcin
- Columbia University Fertility Center, New York, New York
| | - Shan Wei
- Columbia University Fertility Center, New York, New York
| | - Zev Williams
- Columbia University Fertility Center, New York, New York
| |
Collapse
|