1
|
Kriegler M, Herrero S, Fischer R. Where to grow and where to go. Fungal Genet Biol 2025; 178:103983. [PMID: 40187481 DOI: 10.1016/j.fgb.2025.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Filamentous fungi grow as very elongated tubular cells that extend by membrane extension and cell-wall biosynthesis. Membrane and enzyme delivery depend on secretory vesicles that travel along microtubules, accumulate in a structure called the Spitzenkörper and then move along actin cables towards the apical membrane. Whereas vesicle fusion and membrane insertion are well studied, less is known about the mechanisms with which the zones of vesicle fusion and hence the growth zones are defined. One mechanism by which polarity is established and maintained is the polar localization of cell-end marker proteins (CEMPs). They form multi-protein complexes with formin as F-actin polymerase. CEMP delivery depends on microtubules, and hence CEMPs coordinate the microtubule with the actin cytoskeleton. Actin filaments capture microtubule ends, and this positive feedback loop quickly establishes active growth sites. However, CEMP complexes are self-limiting, because fusing vesicles disturb local growth zones and Ca2+ influx pulses lead to F-actin disassembly. This model emerged from studies in Schizosaccharomyces pombe and Aspergillus nidulans. Surprisingly, deletion of CEMP-coding genes is not lethal. S. pombe mutants form T-shaped cells and A. nidulans germlings grow less straight. In comparison, CEMP-mutants had a strong phenotype in Arthrobotrys flagrans, a nematode-trapping fungus, which produces ring-like trapping structures. CEMP-mutants fail to form adhesive rings and instead form sticks. CEMP overexpression caused a hyperbranching phenotype. Hence, CEMPs are involved in polarity maintenance and play critical roles during modulations of polarity. Here, we are going to discuss the functions of CEMPs and their connections to other polarity determinants.
Collapse
Affiliation(s)
- Marius Kriegler
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Satur Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Haque MA, Barman DN, Rahman A, Hossain MS, Ghosh S, Nahar MA, Nahar MNEN, Saha JK, Cho KM, Yun HD. Molecular Cloning, In Silico Analysis, and Characterization of a Novel Cellulose Microfibril Swelling Gene Isolated from Bacillus sp. Strain AY8. Microorganisms 2023; 11:2857. [PMID: 38138001 PMCID: PMC10745351 DOI: 10.3390/microorganisms11122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
A novel cellulose microfibril swelling (Cms) gene of Bacillus sp. AY8 was successfully cloned and sequenced using a set of primers designed based on the conserved region of the gene from the genomic database. The molecular cloning of the Cms gene revealed that the gene consisted of 679 bp sequences encoding 225 amino acids. Further in silico analysis unveiled that the Cms gene contained the NlpC/P60 conserved region that exhibited a homology of 98% with the NlpC/P60 family proteins found in both the strains, Burkholderialata sp. and Burkholderia vietnamiensis. The recombinant Cms enzyme had a significant impact on the reduction of crystallinity indices (CrI) of various substrates including a 3%, a 3.97%, a 4.66%, and a substantial 14.07% for filter paper, defatted cotton fiber, avicel, and alpha cellulose, respectively. Additionally, notable changes in the spectral features were observed among the substrates treated with recombinant Cms enzymes compared to the untreated control. Specifically, there was a decrease in band intensities within the spectral regions of 3000-3450 cm-1, 2900 cm-1, 1429 cm-1, and 1371 cm-1 for the treated filter paper, cotton fiber, avicel, and alpha cellulose, respectively. Furthermore, the recombinant Cms enzyme exhibited a maximum cellulose swelling activity at a pH of 7.0 along with a temperature of 40 °C. The molecular docking data revealed that ligand molecules, such as cellobiose, dextrin, maltose 1-phosphate, and feruloyated xyloglucan, effectively bonded to the active site of the Cms enzyme. The molecular dynamics simulations of the Cms enzyme displayed stable interactions with cellobiose and dextrin molecules up to 100 ns. It is noteworthy to mention that the conserved region of the Cms enzyme did not match with those of the bioadditives like expansins and swollenin proteins. This study is the initial report of a bacterial cellulose microfibril swellase enzyme, which could potentially serve as an additive to enhance biofuel production by releasing fermentable sugars from cellulose.
Collapse
Affiliation(s)
- Md. Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh; (M.S.H.); (M.A.N.); (M.N.-E.-N.N.)
| | - Dhirendra Nath Barman
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md. Shohorab Hossain
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh; (M.S.H.); (M.A.N.); (M.N.-E.-N.N.)
- Department of Biochemistry and Molecular Biology, Trust University, Barisal 8200, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA;
| | - Most. Aynun Nahar
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh; (M.S.H.); (M.A.N.); (M.N.-E.-N.N.)
| | - Mst. Nur-E-Nazmun Nahar
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh; (M.S.H.); (M.A.N.); (M.N.-E.-N.N.)
| | - Joyanta K. Saha
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh;
| | - Kye Man Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Han Dae Yun
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 52725, Republic of Korea
| |
Collapse
|
3
|
Liu C, Bi J, Kang L, Zhou J, Liu X, Liu Z, Yuan S. The molecular mechanism of stipe cell wall extension for mushroom stipe elongation growth. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Expression of Two α-Type Expansins from Ammopiptanthus nanus in Arabidopsis thaliana Enhance Tolerance to Cold and Drought Stresses. Int J Mol Sci 2019; 20:ijms20215255. [PMID: 31652768 PMCID: PMC6862469 DOI: 10.3390/ijms20215255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Expansins, cell-wall loosening proteins, play an important role in plant growth and development and abiotic stress tolerance. Ammopiptanthus nanus (A. nanus) is an important plant to study to understand stress resistance in forestry. In our previous study, two α-type expansins from A. nanus were cloned and named AnEXPA1 and AnEXPA2. In this study, we found that they responded to different abiotic stress and hormone signals. It suggests that they may play different roles in response to abiotic stress. Their promoters show some of the same element responses to abiotic stress and hormones, but some special elements were identified between the expansins that could be essential for their expression. In order to further testify the reliability of the above results, we conducted an analysis of β-glucuronidase (GUS) dyeing. The analysis showed that AnEXPA1 was only induced by cold stress, whereas AnEXPA2 responded to hormone induction. AnEXPA1 and AnEXPA2 transgenic Arabidopsis plants showed better tolerance to cold and drought stresses. Moreover, the ability to scavenge reactive oxygen species (ROS) was significantly improved in the transgenic plants, and expansin activity was enhanced. These results suggested that AnEXPA1 and AnEXPA2 play an important role in the response to abiotic stress. Our research contributes to a better understanding of the regulatory network of expansins and may benefit agricultural production.
Collapse
|
5
|
Zhang W, Kang L, Yang M, Zhou Y, Wang J, Liu Z, Yuan S. Purification, characterization and function analysis of an extracellular β-glucosidase from elongating stipe cell walls inCoprinopsis cinerea. FEMS Microbiol Lett 2016; 363:fnw078. [DOI: 10.1093/femsle/fnw078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2016] [Indexed: 12/30/2022] Open
|
6
|
Martínez-Núñez L, Riquelme M. Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa. Fungal Genet Biol 2015; 85:58-70. [PMID: 26541633 DOI: 10.1016/j.fgb.2015.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/25/2015] [Accepted: 11/01/2015] [Indexed: 02/07/2023]
Abstract
Neurospora crassa BGT-1 (NCU06381) and BGT-2 (NCU09175) are two putative glycoside hydrolases (GHs) with additional predicted glycosyltransferase activity and binding sites for a glycosyl phosphatidyl inositol (GPI) anchor that would facilitate their attachment to the plasma membrane (PM). To discern their role in key morphogenetic events during vegetative development of N. crassa, BGT-1 and BGT-2 were labeled with the green fluorescent protein (GFP). The gfp was inserted immediately after the signal peptide sequence, within the bgt-1 encoding sequence, or directly before the GPI-binding site in the case of bgt-2. Both BGT-1-GFP and BGT-2-GFP were observed at the PM of the hyphal apical dome, excluding the foremost apical region and the Spitzenkörper (Spk), where chitin and β-1,3-glucan synthases have been previously found. These and previous studies suggest a division of labor of the cell wall synthesizing machinery at the hyphal dome: at the very tip, glucans are synthesized by enzymes that accumulate at the Spk, before getting incorporated into the PM, whereas at the subtending zone below the apex, glucans are presumably hydrolyzed, producing amenable ends for further branching and crosslinking with other cell wall polymers. Additionally, BGT-1-GFP and BGT-2-GFP were observed at the leading edge of new developing septa, at unreleased interconidial junctions, at conidial poles, at germling and hyphal fusion sites, and at sites of branch emergence, all of them processes that seemingly involve cell wall remodeling. Even though single and double mutant strains for the corresponding genes did not show a drastic reduction of growth rate, bgt-2Δ and bgt-1Δ::bgt-2Δ strains exhibited an increased resistance to the cell wall stressors calcofluor white (CW) and congo red (CR) than the reference strain, which suggests they present significant architectural changes in their cell wall. Furthermore, the conidiation defects observed in the mutants indicate a significant role of BGT-1 and BGT-2 on the re-arrangement of glucans needed at the conidiophore cell wall to allow conidial separation.
Collapse
Affiliation(s)
- Leonora Martínez-Núñez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada-CICESE, Ensenada, Baja California 22860, Mexico
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada-CICESE, Ensenada, Baja California 22860, Mexico.
| |
Collapse
|
7
|
Georgelis N, Nikolaidis N, Cosgrove DJ. Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 2015; 99:3807-23. [PMID: 25833181 PMCID: PMC4427351 DOI: 10.1007/s00253-015-6534-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
Abstract
The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by nonlytic means ("amorphogenesis"). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin, and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures.
Collapse
Affiliation(s)
| | - Nikolas Nikolaidis
- Department of Biological Science, California State University, Fullerton, CA 92831, USA
| | - Daniel J. Cosgrove
- Department of Biology, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
9
|
Baccelli I. Cerato-platanin family proteins: one function for multiple biological roles? FRONTIERS IN PLANT SCIENCE 2015; 5:769. [PMID: 25610450 PMCID: PMC4284994 DOI: 10.3389/fpls.2014.00769] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/12/2014] [Indexed: 05/24/2023]
|
10
|
Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol 2014; 72:168-181. [DOI: 10.1016/j.fgb.2014.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 12/30/2022]
|
11
|
Liu L, Feizi A, Österlund T, Hjort C, Nielsen J. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae. BMC SYSTEMS BIOLOGY 2014; 8:73. [PMID: 24961398 PMCID: PMC4086290 DOI: 10.1186/1752-0509-8-73] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/18/2014] [Indexed: 01/20/2023]
Abstract
Background The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus.
Collapse
|
12
|
Sequence diversity and gene expression analyses of expansin-related proteins in the white-rot basidiomycete, Phanerochaete carnosa. Fungal Genet Biol 2014; 72:115-123. [PMID: 24880035 DOI: 10.1016/j.fgb.2014.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 11/21/2022]
Abstract
Expansin and expansin-related proteins loosen plant cell wall architectures and are widely distributed in several types of organisms, including plants, fungi and bacteria. Here we describe sequence diversity and unique gene expression profiles of multiple expansin-related proteins identified in the basidiomycete, Phanerochaete carnosa. The protein sequences were homologous to loosenin, an expansin-related protein reported in the basidiomycete, Bjerkandera adusta. We identified homologous sequences of each of those P. carnosa proteins in many basidiomycete species. Twelve P. carnosa loosenin-like proteins (LOOLs) were classified into two subgroups according to sequence homology. Conservation of polysaccharide-binding amino acid residues was stricter in subgroup A. Subgroup A sequences included a conserved 8-9 amino acid insertion in a polysaccharide-binding groove whereas subgroup B contained a 12-18 amino acid insertion next to the binding groove. The P. carnosa genome also encodes the expansin-related protein, DREX1, which adopts a loosenin-like structure but has lower sequence homology to other LOOLs. The gene expression analysis of those proteins showed distinct patterns that were not significantly related to subgroupings. The variation in the protein sequences and gene expression patterns, and wide distribution among the basidiomycota, suggest that the diverse cell wall loosening proteins contribute to effective plant cell wall association and utilization by basidiomycetes.
Collapse
|
13
|
Kosawang C, Karlsson M, Jensen DF, Dilokpimol A, Collinge DB. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea. BMC Genomics 2014; 15:55. [PMID: 24450745 PMCID: PMC3902428 DOI: 10.1186/1471-2164-15-55] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clonostachys rosea strain IK726 is a mycoparasitic fungus capable of controlling mycotoxin-producing Fusarium species, including F. graminearum and F. culmorum, known to produce Zearalenone (ZEA) and Deoxynivalenol (DON). DON is a type B trichothecene known to interfere with protein synthesis in eukaryotes. ZEA is a estrogenic-mimicing mycotoxin that exhibits antifungal growth. C. rosea produces the enzyme zearalenone hydrolase (ZHD101), which degrades ZEA. However, the molecular basis of resistance to DON in C. rosea is not understood. We have exploited a genome-wide transcriptomic approach to identify genes induced by DON and ZEA in order to investigate the molecular basis of mycotoxin resistance C. rosea. RESULTS We generated DON- and ZEA-induced cDNA libraries based on suppression subtractive hybridization. A total of 443 and 446 sequenced clones (corresponding to 58 and 65 genes) from the DON- and ZEA-induced library, respectively, were analysed. DON-induced transcripts represented genes encoding metabolic enzymes such as cytochrome P450, cytochrome c oxidase and stress response proteins. In contrast, transcripts encoding the ZEA-detoxifying enzyme ZHD101 and those encoding a number of ATP-Binding Cassette (ABC) transporter transcripts were highly frequent in the ZEA-induced library. Subsequent bioinformatics analysis predicted that all transcripts with similarity to ABC transporters could be ascribed to only 2 ABC transporters genes, and phylogenetic analysis of the predicted ABC transporters suggested that they belong to group G (pleiotropic drug transporters) of the fungal ABC transporter gene family. This is the first report suggesting involvement of ABC transporters in ZEA tolerance. Expression patterns of a selected set of DON- and ZEA-induced genes were validated by the use of quantitative RT-PCR after exposure to the toxins. The qRT-PCR results obtained confirm the expression patterns suggested from the EST redundancy data. CONCLUSION The present study identifies a number of transcripts encoding proteins that are potentially involved in conferring resistance to DON and ZEA in the mycoparasitic fungus C. rosea. Whilst metabolic readjustment is potentially the key to withstanding DON, the fungus produces ZHD101 to detoxify ZEA and ABC transporters to transport ZEA or its degradation products out from the fungal cell.
Collapse
Affiliation(s)
- Chatchai Kosawang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Nikolaidis N, Doran N, Cosgrove DJ. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol 2013; 31:376-86. [PMID: 24150040 DOI: 10.1093/molbev/mst206] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.
Collapse
Affiliation(s)
- Nikolas Nikolaidis
- Department of Biological Science and Center for Applied Biotechnology Studies, California State University, Fullerton
| | | | | |
Collapse
|
15
|
Georgelis N, Nikolaidis N, Cosgrove DJ. Biochemical analysis of expansin-like proteins from microbes. Carbohydr Polym 2013; 100:17-23. [PMID: 24188833 DOI: 10.1016/j.carbpol.2013.04.094] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 03/09/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Expansins cause plant cell wall loosening and are present primarily in the plant kingdom. Gene sequence analysis suggests that expansins are present in several plant-colonizing or plant-pathogenic bacteria and fungi. However, experimental evidence of microbial expansin activity is largely lacking. Here we provide evidence that expansins from three plant pathogenic bacteria and one fungus cause extension of cell walls in vitro and weaken filter paper networks, without lytic activity. Since expansins were able to weaken cellulose networks, we tested whether they synergistically enhanced the activity of several cellulases in hydrolysis of cellulose. The microbial expansins did not show such synergism beyond the nonspecific effect of bovine serum albumin. Our results show that the expansins present in several pathogenic microbes have weak wall-loosening activity and we infer a role for these expansins in plant pathogenesis. Additionally, the convenient expression of several expansins in Escherichia coli makes a future comparative structure-function analysis among expansins possible in order to understand their activity at the molecular level.
Collapse
Affiliation(s)
- Nikolaos Georgelis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
16
|
Eisosome distribution and localization in the meiotic progeny of Aspergillus nidulans. Fungal Genet Biol 2013; 53:84-96. [DOI: 10.1016/j.fgb.2013.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/17/2012] [Accepted: 01/10/2013] [Indexed: 01/20/2023]
|
17
|
Cerato-platanin shows expansin-like activity on cellulosic materials. Appl Microbiol Biotechnol 2013; 98:175-84. [DOI: 10.1007/s00253-013-4822-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
18
|
Takasaki K, Miura T, Kanno M, Tamaki H, Hanada S, Kamagata Y, Kimura N. Discovery of glycoside hydrolase enzymes in an avicel-adapted forest soil fungal community by a metatranscriptomic approach. PLoS One 2013; 8:e55485. [PMID: 23393585 PMCID: PMC3564753 DOI: 10.1371/journal.pone.0055485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
To discover the structural and functional novel glycoside hydrolase enzymes from soil fungal communities that decompose cellulosic biomass, transcripts of functional genes in a forest soil were analyzed. Pyrosequencing of the Avicel and wheat-amended soil cDNAs produced 56,084 putative protein-coding sequence (CDS) fragments, and the most dominant group of putative CDSs based on the taxonomic analysis was assigned to the domain Eukarya, which accounted for 99% of the total number of the putative CDSs. Of 9,449 eukaryotic CDSs whose functions could be categorized, approximately 40% of the putative CDSs corresponded to metabolism-related genes, including genes involved in carbohydrate, amino acid, and energy metabolism. Among the carbohydrate-metabolism genes, 129 sequences encoded glycoside hydrolase enzymes, with 47 sequences being putative cellulases belonging to 13 GH families. To characterize the function of glycoside hydrolase enzymes, we synthesized the putative CelA gene with codon optimization for heterologous expression in Escherichia coli, which was shown to be similar to the structure of plant expansins, and observed stimulation for cellulase activity on Avicel degradation. This study demonstrated that fungal communities adapt to Avicel and wheat decomposition and that metatranscriptomic sequence data can be reference data for identifying a novel gene.
Collapse
Affiliation(s)
- Kazuto Takasaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takamasa Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Manabu Kanno
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Satoshi Hanada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Nobutada Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
19
|
Baccelli I, Comparini C, Bettini PP, Martellini F, Ruocco M, Pazzagli L, Bernardi R, Scala A. The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani. FEMS Microbiol Lett 2012; 327:155-63. [DOI: 10.1111/j.1574-6968.2011.02475.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ivan Baccelli
- Dipartimento di Biotecnologie Agrarie; Università di Firenze; Florence; Italy
| | - Cecilia Comparini
- Dipartimento di Biotecnologie Agrarie; Università di Firenze; Florence; Italy
| | - Priscilla P. Bettini
- Dipartimento di Biologia Evoluzionistica ‘Leo Pardi’; Università di Firenze; Florence; Italy
| | | | - Michelina Ruocco
- Istituto per la Protezione delle Piante; CNR; Portici (NA); Italy
| | - Luigia Pazzagli
- Dipartimento di Scienze Biochimiche; Università di Firenze; Florence; Italy
| | - Rodolfo Bernardi
- Dipartimento di Biologia delle Piante Agrarie; Università di Pisa; Pisa; Italy
| | - Aniello Scala
- Dipartimento di Biotecnologie Agrarie; Università di Firenze; Florence; Italy
| |
Collapse
|
20
|
Quiroz-Castañeda RE, Martínez-Anaya C, Cuervo-Soto LI, Segovia L, Folch-Mallol JL. Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta. Microb Cell Fact 2011; 10:8. [PMID: 21314954 PMCID: PMC3050684 DOI: 10.1186/1475-2859-10-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. RESULTS Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. CONCLUSIONS LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.
Collapse
Affiliation(s)
- Rosa E Quiroz-Castañeda
- Laboratorio de Biología Molecular de Hongos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001 Col, Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | | | | | | | | |
Collapse
|
21
|
Eisosome organization in the filamentous ascomycete Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1441-54. [PMID: 20693301 DOI: 10.1128/ec.00087-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eisosomes are subcortical organelles implicated in endocytosis and have hitherto been described only in Saccharomyces cerevisiae. They comprise two homologue proteins, Pil1 and Lsp1, which colocalize with the transmembrane protein Sur7. These proteins are universally conserved in the ascomycetes. We identify in Aspergillus nidulans (and in all members of the subphylum Pezizomycotina) two homologues of Pil1/Lsp1, PilA and PilB, originating from a duplication independent from that extant in the subphylum Saccharomycotina. In the aspergilli there are several Sur7-like proteins in each species, including one strict Sur7 orthologue (SurG in A. nidulans). In A. nidulans conidiospores, but not in hyphae, the three proteins colocalize at the cell cortex and form tightly packed punctate structures that appear different from the clearly distinct eisosome patches observed in S. cerevisiae. These structures are assembled late during the maturation of conidia. In mycelia, punctate structures are present, but they are composed only of PilA, while PilB is diffused in the cytoplasm and SurG is located in vacuoles and endosomes. Deletion of each of the genes does not lead to any obvious growth phenotype, except for moderate resistance to itraconazole. We could not find any obvious association between mycelial (PilA) eisosome-like structures and endocytosis. PilA and SurG are necessary for conidial eisosome organization in ways that differ from those for their S. cerevisiae homologues. These data illustrate that conservation of eisosomal proteins within the ascomycetes is accompanied by a striking functional divergence.
Collapse
|
22
|
Roumelioti K, Vangelatos I, Sophianopoulou V. A cryptic role of a glycolytic–gluconeogenic enzyme (aldolase) in amino acid transporter turnover in Aspergillus nidulans. Fungal Genet Biol 2010; 47:254-67. [DOI: 10.1016/j.fgb.2009.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 11/25/2022]
|
23
|
Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol 2010; 76:2556-61. [PMID: 20173066 DOI: 10.1128/aem.02499-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swollenin is a protein from Trichoderma reesei that has a unique activity for disrupting cellulosic materials, and it has sequence similarity to expansins, plant cell wall proteins that have a loosening effect that leads to cell wall enlargement. In this study we cloned a gene encoding a swollenin-like protein, Swo1, from the filamentous fungus Aspergillus fumigatus, and designated the gene Afswo1. AfSwo1 has a bimodular structure composed of a carbohydrate-binding module family 1 (CBM1) domain and a plant expansin-like domain. AfSwo1 was produced using Aspergillus oryzae for heterologous expression and was easily isolated by cellulose-affinity chromatography. AfSwo1 exhibited weak endoglucanase activity toward carboxymethyl cellulose (CMC) and bound not only to crystalline cellulose Avicel but also to chitin, while showing no detectable affinity to xylan. Treatment by AfSwo1 caused disruption of Avicel into smaller particles without any detectable reducing sugar. Furthermore, simultaneous incubation of AfSwo1 with a cellulase mixture facilitated saccharification of Avicel. Our results provide a novel approach for efficient bioconversion of crystalline cellulose into glucose by use of the cellulose-disrupting protein AfSwo1.
Collapse
|
24
|
Gournas C, Amillis S, Vlanti A, Diallinas G. Transport-dependent endocytosis and turnover of a uric acid-xanthine permease. Mol Microbiol 2010; 75:246-60. [DOI: 10.1111/j.1365-2958.2009.06997.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Luo Y, Lv GL, Wu WT, Chen SN, Cheng ZQ. Analysis of genome expression in the response of Oryza granulata to Xanthomonas oryzae pv oryzae. Mol Biol Rep 2009; 37:875-92. [PMID: 19672692 DOI: 10.1007/s11033-009-9694-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/28/2009] [Indexed: 11/25/2022]
Abstract
In order to understand the mechanism of the strong resistance of Oryza granulata to Xanthomonas oryzae pv oryzae (Xoo), cDNA microarrays containing 2,436 cDNA clones of Oryza granulata derived from Suppression subtractive library and cDNA library were constructed and genome expression patterns after inoculating Xoo were investigated. Three hundred and 83 clones were up-regulated, 836 clones were down-regulated after pathogen infection. Approximately 800 clones were sequenced and BLAST search were carried out. There are no homologous sequences for 35 clones of them. The functions of the homologous sequences for most clones are unknown. The known functions of the homologous sequences involved in photosynthesis, respiration, material transport, signal transduction, pathogenesis-related proteins, transcription factors, the active oxygen scavenging system and so on. The putative functions of them in responding to Xoo were discussed.
Collapse
Affiliation(s)
- Yu Luo
- College of Life Science, Yunnan University, 650091, Kunming, China.
| | | | | | | | | |
Collapse
|