1
|
Li J, Chroumpi T, Garrigues S, Kun RS, Meng J, Salazar-Cerezo S, Aguilar-Pontes MV, Zhang Y, Tejomurthula S, Lipzen A, Ng V, Clendinen CS, Tolić N, Grigoriev IV, Tsang A, Mäkelä MR, Snel B, Peng M, de Vries RP. The Sugar Metabolic Model of Aspergillus niger Can Only Be Reliably Transferred to Fungi of Its Phylum. J Fungi (Basel) 2022; 8:jof8121315. [PMID: 36547648 PMCID: PMC9781776 DOI: 10.3390/jof8121315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fungi play a critical role in the global carbon cycle by degrading plant polysaccharides to small sugars and metabolizing them as carbon and energy sources. We mapped the well-established sugar metabolic network of Aspergillus niger to five taxonomically distant species (Aspergillus nidulans, Penicillium subrubescens, Trichoderma reesei, Phanerochaete chrysosporium and Dichomitus squalens) using an orthology-based approach. The diversity of sugar metabolism correlates well with the taxonomic distance of the fungi. The pathways are highly conserved between the three studied Eurotiomycetes (A. niger, A. nidulans, P. subrubescens). A higher level of diversity was observed between the T. reesei and A. niger, and even more so for the two Basidiomycetes. These results were confirmed by integrative analysis of transcriptome, proteome and metabolome, as well as growth profiles of the fungi growing on the corresponding sugars. In conclusion, the establishment of sugar pathway models in different fungi revealed the diversity of fungal sugar conversion and provided a valuable resource for the community, which would facilitate rational metabolic engineering of these fungi as microbial cell factories.
Collapse
Affiliation(s)
- Jiajia Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Roland S. Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Sonia Salazar-Cerezo
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | - Yu Zhang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Sravanthi Tejomurthula
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Chaevien S. Clendinen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nikola Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Igor V. Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Adrian Tsang
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
2
|
Borin GP, Oliveira JVDC. Assessing the intracellular primary metabolic profile of Trichoderma reesei and Aspergillus niger grown on different carbon sources. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:998361. [PMID: 37746225 PMCID: PMC10512294 DOI: 10.3389/ffunb.2022.998361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 09/26/2023]
Abstract
Trichoderma reesei and Aspergillus niger are efficient biological platforms for the production of various industrial products, including cellulases and organic acids. Nevertheless, despite the extensive research on these fungi, integrated analyses of omics-driven approaches are still missing. In this study, the intracellular metabolic profile of T. reesei RUT-C30 and A. niger N402 strains grown on glucose, lactose, carboxymethylcellulose (CMC), and steam-exploded sugarcane bagasse (SEB) as carbon sources for 48 h was analysed by proton nuclear magnetic resonance. The aim was to verify the changes in the primary metabolism triggered by these substrates and use transcriptomics data from the literature to better understand the dynamics of the observed alterations. Glucose and CMC induced higher fungal growth whereas fungi grown on lactose showed the lowest dry weight. Metabolic profile analysis revealed that mannitol, trehalose, glutamate, glutamine, and alanine were the most abundant metabolites in both fungi regardless of the carbon source. These metabolites are of particular interest for the mobilization of carbon and nitrogen, and stress tolerance inside the cell. Their concomitant presence indicates conserved mechanisms adopted by both fungi to assimilate carbon sources of different levels of recalcitrance. Moreover, the higher levels of galactose intermediates in T. reesei suggest its better adaptation in lactose, whereas glycolate and malate in CMC might indicate activation of the glyoxylate shunt. Glycerol and 4-aminobutyrate accumulated in A. niger grown on CMC and lactose, suggesting their relevant role in these carbon sources. In SEB, a lower quantity and diversity of metabolites were identified compared to the other carbon sources, and the metabolic changes and higher xylanase and pNPGase activities indicated a better utilization of bagasse by A. niger. Transcriptomic analysis supported the observed metabolic changes and pathways identified in this work. Taken together, we have advanced the knowledge about how fungal primary metabolism is affected by different carbon sources, and have drawn attention to metabolites still unexplored. These findings might ultimately be considered for developing more robust and efficient microbial factories.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
3
|
Meng J, Németh Z, Peng M, Fekete E, Garrigues S, Lipzen A, Ng V, Savage E, Zhang Y, Grigoriev IV, Mäkelä MR, Karaffa L, de Vries RP. GalR, GalX and AraR co-regulate d-galactose and l-arabinose utilization in Aspergillus nidulans. Microb Biotechnol 2022; 15:1839-1851. [PMID: 35213794 PMCID: PMC9151342 DOI: 10.1111/1751-7915.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022] Open
Abstract
Filamentous fungi produce a wide variety of enzymes in order to efficiently degrade plant cell wall polysaccharides. The production of these enzymes is controlled by transcriptional regulators, which also control the catabolic pathways that convert the released monosaccharides. Two transcriptional regulators, GalX and GalR, control d-galactose utilization in the model filamentous fungus Aspergillus nidulans, while the arabinanolytic regulator AraR regulates l-arabinose catabolism. d-Galactose and l-arabinose are commonly found together in polysaccharides, such as arabinogalactan, xylan and rhamnogalacturonan I. Therefore, the catabolic pathways that convert d-galactose and l-arabinose are often also likely to be active simultaneously. In this study, we investigated the interaction between GalX, GalR and AraR in d-galactose and l-arabinose catabolism. For this, we generated single, double and triple mutants of the three regulators, and analysed their growth and enzyme and gene expression profiles. Our results clearly demonstrated that GalX, GalR and AraR co-regulate d-galactose catabolism in A. nidulans. GalX has a prominent role on the regulation of genes of d-galactose oxido-reductive pathway, while AraR can compensate for the absence of GalR and/or GalX.
Collapse
Affiliation(s)
- Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Zoltán Németh
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Vivian Ng
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Emily Savage
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yu Zhang
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary.,Institute of Metagenomics, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
4
|
Chroumpi T, Martínez-Reyes N, Kun RS, Peng M, Lipzen A, Ng V, Tejomurthula S, Zhang Y, Grigoriev IV, Mäkelä MR, de Vries RP, Garrigues S. Detailed analysis of the D-galactose catabolic pathways in Aspergillus niger reveals complexity at both metabolic and regulatory level. Fungal Genet Biol 2022; 159:103670. [PMID: 35121171 DOI: 10.1016/j.fgb.2022.103670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 01/23/2023]
Abstract
The current impetus towards a sustainable bio-based economy has accelerated research to better understand the mechanisms through which filamentous fungi convert plant biomass, a valuable feedstock for biotechnological applications. Several transcription factors have been reported to control the polysaccharide degradation and metabolism of the resulting sugars in fungi. However, little is known about their individual contributions, interactions and crosstalk. D-galactose is a hexose sugar present mainly in hemicellulose and pectin in plant biomass. Here, we study D-galactose conversion by Aspergillus niger and describe the involvement of the arabinanolytic and xylanolytic activators AraR and XlnR, in addition to the D-galactose-responsive regulator GalX. Our results deepen the understanding of the complexity of the filamentous fungal regulatory network for plant biomass degradation and sugar catabolism, and facilitate the generation of more efficient plant biomass-degrading strains for biotechnological applications.
Collapse
Affiliation(s)
- Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Natalia Martínez-Reyes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Sravanthi Tejomurthula
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yu Zhang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| | - Miia R Mäkelä
- Department of Microbiology, P.O. Box 56, Viikinkaari 9, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
5
|
Wang H, Sun T, Zhao Z, Gu S, Liu Q, Wu T, Wang D, Tian C, Li J. Transcriptional Profiling of Myceliophthora thermophila on Galactose and Metabolic Engineering for Improved Galactose Utilization. Front Microbiol 2021; 12:664011. [PMID: 33995328 PMCID: PMC8113861 DOI: 10.3389/fmicb.2021.664011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient biological conversion of all sugars from lignocellulosic biomass is necessary for the cost-effective production of biofuels and commodity chemicals. Galactose is one of the most abundant sugar in many hemicelluloses, and it will be important to capture this carbon for an efficient bioconversion process of plant biomass. Thermophilic fungus Myceliophthora thermophila has been used as a cell factory to produce biochemicals directly from renewable polysaccharides. In this study, we draw out the two native galactose utilization pathways, including the Leloir pathway and oxido-reductive pathway, and identify the significance and contribution of them, through transcriptional profiling analysis of M. thermophila and its mutants on galactose. We find that galactokinase was necessary for galactose transporter expression, and disruption of galK resulted in decreased galactose utilization. Through metabolic engineering, both galactokinase deletion and galactose transporter overexpression can activate internal the oxido-reductive pathway and improve the consumption rate of galactose. Finally, the heterologous galactose-degradation pathway, De Ley–Doudoroff (DLD) pathway, was successfully integrated into M. thermophila, and the consumption rate of galactose in the engineered strain was increased by 57%. Our study focuses on metabolic engineering for accelerating galactose utilization in a thermophilic fungus that will be beneficial for the rational design of fungal strains to produce biofuels and biochemicals from a variety of feedstocks with abundant galactose.
Collapse
Affiliation(s)
- Hanyu Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Sun
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhen Zhao
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shuying Gu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qian Liu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Taju Wu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chaoguang Tian
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingen Li
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
6
|
Xu Y, Chi P, Lv J, Bilal M, Cheng H. L-Xylo-3-hexulose, a new rare sugar produced by the action of acetic acid bacteria on galactitol, an exception to Bertrand Hudson's rule. Biochim Biophys Acta Gen Subj 2020; 1865:129740. [PMID: 32956752 DOI: 10.1016/j.bbagen.2020.129740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND In acetic acid bacteria such as Gluconobacter oxydans or Gluconobacter cerinus, pyrroloquinoline quinone (PQQ) in the periplasm serves as the redox cofactor for several membrane-bound dehydrogenases that oxidize polyhydric alcohols to rare sugars, which can be used as a healthy alternative for traditional sugars and sweeteners. These oxidation reactions obey the generally accepted Bertrand Hudson's rule, in which only the polyhydric alcohols that possess cis d-erythro hydroxyl groups can be oxidized to 2-ketoses using PQQ as a cofactor, while the polyhydric alcohols excluding cis d-erythro hydroxyl groups ruled out oxidation by PQQ-dependent membrane-bound dehydrogenases. METHODS Membrane fractions of G. oxydans were prepared and used as a cell-free catalyst to oxidize galactitol, with or without PQQ as a cofactor. RESULTS In this study, we reported an interesting oxidation reaction that the polyhydric alcohols galactitol (dulcitol), which do not possess cis d-erythro hydroxyl groups, can be oxidized by PQQ-dependent membrane-bound dehydrogenase(s) of acetic acid bacteria at the C-3 and C-5 hydroxyl groups to produce rare sugars l-xylo-3-hexulose and d-tagatose. CONCLUSIONS This reaction may represent an exception to Bertrand Hudson's rule. GENERAL SIGNIFICANCE Bertrand Hudson's rule is a well-known theory in polyhydric alcohols oxidation by PQQ-dependent membrane-bound dehydrogenase in acetic acid bacteria. In this study, galactitol oxidation by a PQQ-dependent membrane-bound dehydrogenase represents an exception to the Bertrand Hudson's rule. Further identification of the associated enzymes and deciphering the explicit enzymatic mechanism will prove this theory.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyang Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Jiangsu, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Upton DJ, McQueen-Mason SJ, Wood AJ. In silico evolution of Aspergillus niger organic acid production suggests strategies for switching acid output. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:27. [PMID: 32123544 PMCID: PMC7038614 DOI: 10.1186/s13068-020-01678-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/06/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The fungus Aspergillus niger is an important industrial organism for citric acid fermentation; one of the most efficient biotechnological processes. Previously we introduced a dynamic model that captures this process in the industrially relevant batch fermentation setting, providing a more accurate predictive platform to guide targeted engineering. In this article we exploit this dynamic modelling framework, coupled with a robust genetic algorithm for the in silico evolution of A. niger organic acid production, to provide solutions to complex evolutionary goals involving a multiplicity of targets and beyond the reach of simple Boolean gene deletions. We base this work on the latest metabolic models of the parent citric acid producing strain ATCC1015 dedicated to organic acid production with the required exhaustive genomic coverage needed to perform exploratory in silico evolution. RESULTS With the use of our informed evolutionary framework, we demonstrate targeted changes that induce a complete switch of acid output from citric to numerous different commercially valuable target organic acids including succinic acid. We highlight the key changes in flux patterns that occur in each case, suggesting potentially valuable targets for engineering. We also show that optimum acid productivity is achieved through a balance of organic acid and biomass production, requiring finely tuned flux constraints that give a growth rate optimal for productivity. CONCLUSIONS This study shows how a genome-scale metabolic model can be integrated with dynamic modelling and metaheuristic algorithms to provide solutions to complex metabolic engineering goals of industrial importance. This framework for in silico guided engineering, based on the dynamic batch growth relevant to industrial processes, offers considerable potential for future endeavours focused on the engineering of organisms to produce valuable products.
Collapse
Affiliation(s)
- Daniel J. Upton
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | | | - A. Jamie Wood
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD UK
| |
Collapse
|
8
|
l-Arabinose induces d-galactose catabolism via the Leloir pathway in Aspergillus nidulans. Fungal Genet Biol 2018; 123:53-59. [PMID: 30496805 DOI: 10.1016/j.fgb.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/03/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
l-Arabinose and d-galactose are the principal constituents of l-arabinogalactan, and also co-occur in other hemicelluloses and pectins. In this work we hypothesized that similar to the induction of relevant glycoside hydrolases by monomers liberated from these plant heteropolymers, their respective catabolisms in saprophytic and phytopathogenic fungi may respond to the presence of the other sugar to promote synergistic use of the complex growth substrate. We showed that these two sugars are indeed consumed simultaneously by Aspergillus nidulans, while l-arabinose is utilised faster in the presence than in the absence of d-galactose. Furthermore, the first two genes of the Leloir pathway for d-galactose catabolism - encoding d-galactose 1-epimerase and galactokinase - are induced more rapidly by l-arabinose than by d-galactose eventhough deletion mutants thereof grow as well as a wild type strain on the pentose. d-Galactose 1-epimerase is hyperinduced by l-arabinose, d-xylose and l-arabitol but not by xylitol. The results suggest that in A. nidulans, l-arabinose and d-xylose - both requiring NADPH for their catabolisation - actively promote the enzyme infrastructure necessary to convert β-d-galactopyranose via the Leloir pathway with its α-anomer specific enzymes, into β-d-glucose-6-phosphate (the starting substrate of the oxidative part of the pentose phosphate pathway) even in the absence of d-galactose.
Collapse
|
9
|
Aguilar-Pontes MV, Brandl J, McDonnell E, Strasser K, Nguyen TTM, Riley R, Mondo S, Salamov A, Nybo JL, Vesth TC, Grigoriev IV, Andersen MR, Tsang A, de Vries RP. The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Stud Mycol 2018; 91:61-78. [PMID: 30425417 PMCID: PMC6231085 DOI: 10.1016/j.simyco.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.
Collapse
Affiliation(s)
- M V Aguilar-Pontes
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J Brandl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - E McDonnell
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - K Strasser
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - T T M Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - S Mondo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - A Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - J L Nybo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - T C Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - I V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - M R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - A Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R P de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
10
|
Schuler D, Höll C, Grün N, Ulrich J, Dillner B, Klebl F, Ammon A, Voll LM, Kämper J. Galactose metabolism and toxicity in Ustilago maydis. Fungal Genet Biol 2018; 114:42-52. [PMID: 29580862 DOI: 10.1016/j.fgb.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
In most organisms, galactose is metabolized via the Leloir pathway, which is conserved from bacteria to mammals. Utilization of galactose requires a close interplay of the metabolic enzymes, as misregulation or malfunction of individual components can lead to the accumulation of toxic intermediate compounds. For the phytopathogenic basidiomycete Ustilago maydis, galactose is toxic for wildtype strains, i.e. leads to growth repression despite the presence of favorable carbon sources as sucrose. The galactose sensitivity can be relieved by two independent modifications: (1) by disruption of Hxt1, which we identify as the major transporter for galactose, and (2) by a point mutation in the gene encoding the galactokinase Gal1, the first enzyme of the Leloir pathway. The mutation in gal1(Y67F) leads to reduced enzymatic activity of Gal1 and thus may limit the formation of putatively toxic galactose-1-phosphate. However, systematic deletions and double deletions of different genes involved in galactose metabolism point to a minor role of galactose-1-phosphate in galactose toxicity. Our results show that molecular triggers for galactose toxicity in U. maydis differ from yeast and mammals.
Collapse
Affiliation(s)
- David Schuler
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Fritz Haber Weg 4, 76131 Karlsruhe, Germany
| | - Christina Höll
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Fritz Haber Weg 4, 76131 Karlsruhe, Germany
| | - Nathalie Grün
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Fritz Haber Weg 4, 76131 Karlsruhe, Germany
| | - Jonas Ulrich
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Fritz Haber Weg 4, 76131 Karlsruhe, Germany
| | - Bastian Dillner
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Fritz Haber Weg 4, 76131 Karlsruhe, Germany
| | - Franz Klebl
- FAU Erlangen-Nuremberg, Department of Biology, Molecular Plant Physiology, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alexandra Ammon
- Philips-University of Marburg, Department of Biology, Plant Physiology and Photo Biology, Karl von Frisch Strasse 8, 35043 Marburg, Germany
| | - Lars M Voll
- Philips-University of Marburg, Department of Biology, Plant Physiology and Photo Biology, Karl von Frisch Strasse 8, 35043 Marburg, Germany
| | - Jörg Kämper
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Fritz Haber Weg 4, 76131 Karlsruhe, Germany.
| |
Collapse
|
11
|
Kowalczyk JE, Gruben BS, Battaglia E, Wiebenga A, Majoor E, de Vries RP. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression. PLoS One 2015; 10:e0143200. [PMID: 26580075 PMCID: PMC4651341 DOI: 10.1371/journal.pone.0143200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/02/2015] [Indexed: 11/29/2022] Open
Abstract
In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.
Collapse
Affiliation(s)
- Joanna E. Kowalczyk
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Birgit S. Gruben
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Evy Battaglia
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Ad Wiebenga
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Eline Majoor
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
12
|
Wichelecki DJ, Vetting MW, Chou L, Al-Obaidi N, Bouvier JT, Almo SC, Gerlt JA. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58. J Biol Chem 2015; 290:28963-76. [PMID: 26472925 DOI: 10.1074/jbc.m115.686857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 01/27/2023] Open
Abstract
Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool.
Collapse
Affiliation(s)
- Daniel J Wichelecki
- From the Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | - Matthew W Vetting
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Liyushang Chou
- From the Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | - Nawar Al-Obaidi
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jason T Bouvier
- From the Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | - Steven C Almo
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John A Gerlt
- From the Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
13
|
Khosravi C, Benocci T, Battaglia E, Benoit I, de Vries RP. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 90:1-28. [PMID: 25596028 DOI: 10.1016/bs.aambs.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.
Collapse
|
14
|
|
15
|
Jagtap SS, Singh R, Kang YC, Zhao H, Lee JK. Cloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in d-tagatose production. Enzyme Microb Technol 2014; 58-59:44-51. [DOI: 10.1016/j.enzmictec.2014.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/06/2014] [Accepted: 02/28/2014] [Indexed: 11/24/2022]
|
16
|
Categorisation of sugar acid dehydratases in Aspergillus niger. Fungal Genet Biol 2013; 64:67-72. [PMID: 24382357 DOI: 10.1016/j.fgb.2013.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/24/2022]
Abstract
In the genome of Aspergillus niger five genes were identified coding for proteins with homologies to sugar acid dehydratases. The open reading frames were expressed in Saccharomyces cerevisiae and the activities tested with a library of sugar acids. Four genes were identified to code for proteins with activities with sugar acids: an l-galactonate dehydratase (gaaB), two d-galactonate dehydratases (dgdA, dgdB) and an l-rhamnonate dehydratase (lraC). The specificities of the proteins were characterised. The l-galactonate dehydratase had highest activity with l-fuconate, however it is unclear whether the enzyme is involved in l-fuconate catabolism. None of the proteins showed activity with galactaric acid or galactarolactone.
Collapse
|
17
|
Patyshakuliyeva A, Jurak E, Kohler A, Baker A, Battaglia E, de Bruijn W, Burton KS, Challen MP, Coutinho PM, Eastwood DC, Gruben BS, Mäkelä MR, Martin F, Nadal M, van den Brink J, Wiebenga A, Zhou M, Henrissat B, Kabel M, Gruppen H, de Vries RP. Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus. BMC Genomics 2013; 14:663. [PMID: 24074284 PMCID: PMC3852267 DOI: 10.1186/1471-2164-14-663] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Agaricus bisporus is commercially grown on compost, in which the available carbon sources consist mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller amounts of galactose, glucuronic acid, rhamnose and mannose are also present. RESULTS In this study, genes encoding putative enzymes from carbon metabolism were identified and their expression was studied in different growth stages of A. bisporus. We correlated the expression of genes encoding plant and fungal polysaccharide modifying enzymes identified in the A. bisporus genome to the soluble carbohydrates and the composition of mycelium grown compost, casing layer and fruiting bodies. CONCLUSIONS The compost grown vegetative mycelium of A. bisporus consumes a wide variety of monosaccharides. However, in fruiting bodies only hexose catabolism occurs, and no accumulation of other sugars was observed. This suggests that only hexoses or their conversion products are transported from the vegetative mycelium to the fruiting body, while the other sugars likely provide energy for growth and maintenance of the vegetative mycelium. Clear correlations were found between expression of the genes and composition of carbohydrates. Genes encoding plant cell wall polysaccharide degrading enzymes were mainly expressed in compost-grown mycelium, and largely absent in fruiting bodies. In contrast, genes encoding fungal cell wall polysaccharide modifying enzymes were expressed in both fruiting bodies and vegetative mycelium, but different gene sets were expressed in these samples.
Collapse
Affiliation(s)
| | - Edita Jurak
- Wageningen University, Laboratory of Food Chemistry, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Annegret Kohler
- INRA, UMR1136 INRA/UHP, Interactions Arbres/ Micro-organismes, Centre de Nancy, Champenoux 54280, France
| | - Adam Baker
- University of Warwick, Warwick, CV35 9EF, Wellesbourne, UK
| | - Evy Battaglia
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wouter de Bruijn
- Wageningen University, Laboratory of Food Chemistry, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Kerry S Burton
- East Malling Research, New Road, East Malling, Kent ME19 6BJ, UK
| | - Michael P Challen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Pedro M Coutinho
- UMR 6098 CNRS–Universités Aix-Marseille I and II, Marseille Cedex 9 13288, France
| | - Daniel C Eastwood
- College of Science, University of Swansea, Singleton Park, Swansea SA2 8PP, UK
| | - Birgit S Gruben
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, P. O. Box 56, 00014 Helsinki, Finland
| | - Francis Martin
- INRA, UMR1136 INRA/UHP, Interactions Arbres/ Micro-organismes, Centre de Nancy, Champenoux 54280, France
| | - Marina Nadal
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joost van den Brink
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ad Wiebenga
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernard Henrissat
- UMR 6098 CNRS–Universités Aix-Marseille I and II, Marseille Cedex 9 13288, France
| | - Mirjam Kabel
- Wageningen University, Laboratory of Food Chemistry, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Harry Gruppen
- Wageningen University, Laboratory of Food Chemistry, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Ronald P de Vries
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
18
|
The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol 2013; 60:29-45. [PMID: 23892063 DOI: 10.1016/j.fgb.2013.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 12/29/2022]
Abstract
The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production.
Collapse
|
19
|
Gruben BS, Zhou M, de Vries RP. GalX regulates the D-galactose oxido-reductive pathway in Aspergillus niger. FEBS Lett 2012; 586:3980-5. [PMID: 23063944 DOI: 10.1016/j.febslet.2012.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 09/19/2012] [Indexed: 11/30/2022]
Abstract
Galactose catabolism in Aspergillus nidulans is regulated by at least two regulators, GalR and GalX. In Aspergillus niger only GalX is present, and its role in d-galactose catabolism in this fungus was investigated. Phenotypic and gene expression analysis of a wild type and a galX disruptant revealed that GalX regulates the d-galactose oxido-reductive pathway, but not the Leloir pathway in A. niger.
Collapse
Affiliation(s)
- Birgit S Gruben
- Microbiology & Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
20
|
Mojzita D, Herold S, Metz B, Seiboth B, Richard P. L-xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for D-galactose catabolism in filamentous fungi. J Biol Chem 2012; 287:26010-8. [PMID: 22654107 DOI: 10.1074/jbc.m112.372755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the well established Leloir pathway for the catabolism of d-galactose in fungi, the oxidoreductive pathway has been recently identified. In this oxidoreductive pathway, D-galactose is converted via a series of NADPH-dependent reductions and NAD(+)-dependent oxidations into D-fructose. The pathway intermediates include galactitol, L-xylo-3-hexulose, and d-sorbitol. This study identified the missing link in the pathway, the L-xylo-3-hexulose reductase that catalyzes the conversion of L-xylo-3-hexulose to D-sorbitol. In Trichoderma reesei (Hypocrea jecorina) and Aspergillus niger, we identified the genes lxr4 and xhrA, respectively, that encode the l-xylo-3-hexulose reductases. The deletion of these genes resulted in no growth on galactitol and in reduced growth on D-galactose. The LXR4 was heterologously expressed, and the purified protein showed high specificity for L-xylo-3-hexulose with a K(m) = 2.0 ± 0.5 mm and a V(max) = 5.5 ± 1.0 units/mg. We also confirmed that the product of the LXR4 reaction is D-sorbitol.
Collapse
Affiliation(s)
- Dominik Mojzita
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | | | | | | | | |
Collapse
|
21
|
Fekete E, de Vries RP, Seiboth B, vanKuyk PA, Sándor E, Fekete E, Metz B, Kubicek CP, Karaffa L. D-Galactose uptake is nonfunctional in the conidiospores of Aspergillus niger. FEMS Microbiol Lett 2012; 329:198-203. [PMID: 22324294 DOI: 10.1111/j.1574-6968.2012.02524.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/28/2022] Open
Abstract
The majority of black Aspergilli (Aspergillus section Nigri), including Aspergillus niger, as well as many other Ascomycetes fail to germinate on d-galactose as a sole carbon source. Here, we provide evidence that the ability of A. niger to transport D-galactose is growth stage dependent, being absent in the conidiospores but present in the mycelia. Despite earlier claims, we could identify galactokinase activity in growing cells and all genes of the Leloir pathway (responsible for channelling D-galactose into the EMP pathway) are well induced on D-galactose (and also on lactose, D-xylose and L-arabinose) in the mycelial stage. Expression of all Leloir pathway genes was also detectable in conidiospores, although galE (encoding a galactokinase) and galD (encoding a galactose-1-phosphate uridylyl transferase) were expressed poorly. These results suggest that the D-galactose-negative phenotype of A. niger conidiospores may be due to the lack of inducer uptake.
Collapse
Affiliation(s)
- Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism. FEBS Lett 2012; 586:378-83. [PMID: 22245674 DOI: 10.1016/j.febslet.2012.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 11/20/2022]
Abstract
In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg.
Collapse
|
23
|
Seiboth B, Herold S, Kubicek CP. Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. Subcell Biochem 2012; 64:367-90. [PMID: 23080260 DOI: 10.1007/978-94-007-5055-5_18] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The filamentous fungus T. reeseiis today a paradigm for the commercial scale production of different plant cell wall degrading enzymes mainly cellulases and hemicellulases. Its enzymes have a long history of safe use in industry and well established applications are found within the pulp, paper, food, feed or textile processing industries. However, when these enzymes are to be used for the saccharification of cellulosic plant biomass to simple sugars which can be further converted to biofuels or other biorefinery products, and thus compete with chemicals produced from fossil sources, additional efforts are needed to reduce costs and maximize yield and efficiency of the produced enzyme mixtures. One approach to this end is the use of genetic engineering to manipulate the biochemical and regulatory pathways that operate during enzyme production and control enzyme yield. This review aims at a description of the state of art in this area.
Collapse
Affiliation(s)
- Bernhard Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, 166-5, A-1060, Vienna, Austria
| | | | | |
Collapse
|