1
|
Deng J, Huang S, Kan Y, Song Y, Zhao X, Li N, Yao X, Luo Z, Zhang Y. A transcription factor-mediated regulatory network controls fungal pathogen colonization of insect body cavities. mBio 2024; 15:e0350423. [PMID: 38747587 PMCID: PMC11237471 DOI: 10.1128/mbio.03504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 06/04/2024] Open
Abstract
Successful host tissue colonization is crucial for fungal pathogens to cause mycosis and complete the infection cycle, in which fungal cells undergo a series of morphological transition-included cellular events to combat with hosts. However, many transcription factors (TFs) and their mediated networks regulating fungal pathogen colonization of host tissue are not well characterized. Here, a TF (BbHCR1)-mediated regulatory network was identified in an insect pathogenic fungus, Beauveria bassiana, that controlled insect hemocoel colonization. BbHCR1 was highly expressed in fungal cells after reaching insect hemocoel and controlled the yeast (in vivo blastospores)-to-hyphal morphological switch, evasion of immune defense response, and fungal virulence. Comparative analysis of RNA sequencing and chromatin immunoprecipitation sequencing identified a core set of BbHCR1 target genes during hemocoel colonization, in which abaA and brlA were targeted to limit the rapid switch from blastospores to hyphae and fungal virulence. Two targets encoding hypothetical proteins, HP1 and HP2, were activated and repressed by BbHCR1, respectively, which acted as a virulence factor and repressor, respectively, suggesting that BbHCR1 activated virulence factors but repressed virulence repressors during the colonization of insect hemocoel. BbHCR1 tuned the expression of two dominant hemocoel colonization-involved metabolite biosynthetic gene clusters, which linked its regulatory role in evasion of immune response. Those functions of BbHCR1 were found to be collaboratively regulated by Fus3- and Hog1-MAP kinases via phosphorylation. These findings have drawn a regulatory network in which Fus3- and Hog1-MAP kinases phosphorylate BbHCR1, which in turn controls the colonization of insect body cavities by regulating fungal morphological transition and virulence-implicated genes.IMPORTANCEFungal pathogens adopt a series of tactics for successful colonization in host tissues, which include morphological transition and the generation of toxic and immunosuppressive molecules. However, many transcription factors (TFs) and their linked pathways that regulate tissue colonization are not well characterized. Here, we identified a TF (BbHCR1)-mediated regulatory network that controls the insect fungal pathogen, Beauveria bassiana, colonization of insect hemocoel. During these processes, BbHCR1 targeted the fungal central development pathway for the control of yeast (blastospores)-to-hyphae morphological transition, activated virulence factors, repressed virulence repressors, and tuned the expression of two dominant hemocoel colonization-involved immunosuppressive and immunostimulatory metabolite biosynthetic gene clusters. The BbHCR1 regulatory function was governed by Fus3- and Hog1-MAP kinases. These findings led to a new regulatory network composed of Fus3- and Hog1-MAP kinases and BbHCR1 that control insect body cavity colonization by regulating fungal morphological transition and virulence-implicated genes.
Collapse
Affiliation(s)
- Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
| | - Shuaishuai Huang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
- Ministry of Education Key Laboratory of Biodiversity and Eco-Environmental Protection of the Qinghai-Tibetan Plateau, School of Ecology and Environment, Tibet University, Tibet, China
| | - Yanze Kan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
| | - Yue Song
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
| | - Ning Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
| | - Xuewen Yao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Beibei Culture Collection of Chongqing Agricultural Microbiology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Zhu C, Sun J, Tian F, Tian X, Liu Q, Pan Y, Zhang Y, Luo Z. The Bbotf1 Zn(Ⅱ) 2Cys 6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 204:108083. [PMID: 38458350 DOI: 10.1016/j.jip.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.
Collapse
Affiliation(s)
- Chenhua Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jingxin Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fangfang Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinting Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qi Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Li M, Wang S, Kang L, Xu F, Lan X, He M, Jin K, Xia Y. Arginine metabolism governs microcycle conidiation by changing nitric oxide content in Metarhizium acridum. Appl Microbiol Biotechnol 2023; 107:1257-1268. [PMID: 36640205 DOI: 10.1007/s00253-022-12355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Microcycle conidiation commonly exists in filamentous fungi and has great potential for mass production of mycoinsecticides. L-Arginine metabolism is essential for conidiation and conditional growth and virulence, but its role in microcycle conidiation has not been explored. Here, a unique putative arginase (MaAGA) was characterized in the entomopathogenic fungus Metarhizium acridum. Conidial germination and thermotolerance were facilitated by the disruption of MaAGA. Despite little impact on fungal growth and virulence, the disruption resulted in normal conidiation after a 60-h incubation on microcycle conidiation medium (SYA) under normal culture conditions. In the MaAGA-disruption mutant (ΔMaAGA), intracellular arginine accumulation was sharply increased. Replenishment of the direct metabolites of arginase, namely ornithine and/or urea, was unable to restore the disruption mutant's microcycle conidiation on SYA. Interestingly, nitric oxide synthase (NOS) activity and nitric oxide (NO) levels of the ΔMaAGA strain were markedly decreased in the 60-h-old SYA cultures. Finally, adding Nω-nitro-L-arginine, an inhibitor of NOS, into the SYA converted the microcycle conidiation of the wild-type strain to normal conidiation. In contrast, adding sodium nitroprusside, an NO donor, into the SYA recovered the mutant's microcycle conidiation. The results indicate that arginine metabolism controls microcycle conidiation by changing the content of NO. KEY POINTS: • The MaAGA-disruption led to normal conidiation on microcycle conidiation medium SYA. • Nitric oxide (NO) level of the ΔMaAGA strain was markedly decreased. • Adding an NO donor into the SYA recovered the microcycle conidiation of ΔMaAGA.
Collapse
Affiliation(s)
- Mengfei Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Shuqin Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Luhong Kang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Fei Xu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Xia Lan
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Min He
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
de Souza Rabello VB, Corrêa-Moreira D, Santos C, Abreu Pinto TC, Procopio-Azevedo AC, Boechat J, Coelho RA, Almeida-Paes R, Costa G, Lima N, Zancopé-Oliveira RM, Marques Evangelista Oliveira M. Preservation Methods in Isolates of Sporothrix Characterized by Polyphasic Approach. J Fungi (Basel) 2022; 9:jof9010034. [PMID: 36675855 PMCID: PMC9865284 DOI: 10.3390/jof9010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Sporotrichosis is a subcutaneous mycosis with worldwide distribution and caused by eight pathogenic species of the Sporothrix genus. Different ex situ preservation methods are used around the world to maintain the survival, morphophysiological and genetic traits of fungal strains isolated from patients with sporotrichosis for long terms. The main aim of the present study was to evaluate the survival, phenotypic and genotypic stability of Sporothrix strains after preservation on PDA slant stored at 4 °C, sterile water and cryopreservation at -80 °C, for a period of time of 6, 12, 18 and 24 months of storage. Eight clinical Sporothrix isolates were identified based on a polyphasic approach consisting of classical macro- and micro-morphological traits, biochemical assays, proteomic profiles by MALDI-TOF MS and molecular biology. According to the final identification, one strain was identified as S. schenckii (CMRVS 40428) and seven strains were re-identified as S. brasiliensis (CMRVS 40421, CMRVS 40423, CMRVS 40424, CMRVS 40425, CMRVS 40426, CMRVS 40427 and CMRVS 40433). In addition, it was observed that the isolates survived after the different time points of storage in distilled water, PDA slant and cryopreservation at -80 °C. For fungi preserved in water, low polymorphisms were detected by the partial sequencing of β-tubulin. Cryopreservation at -80 °C induced morphological changes in one single isolate. The proteomic profiles obtained by MALDI-TOF MS after preservation showed differences among the methods. In conclusion, preservation on agar slant stored at 4 °C was the most effective method to preserve the eight clinical Sporothrix strains. This method produced less change in the phenotypic traits and kept the genetic integrity of all strains. Agar slant stored at 4 °C is a simple and inexpensive method and can be especially used in culture collections of limited funding and resources.
Collapse
Affiliation(s)
- Vanessa Brito de Souza Rabello
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Danielly Corrêa-Moreira
- Postdoctoral in Clinical Research in Infectious Diseases, Evandro Chagas National Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Cledir Santos
- Department of Chemistry Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
- Correspondence:
| | - Tatiana Casto Abreu Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Anna Carolina Procopio-Azevedo
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Jéssica Boechat
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Rowena Alves Coelho
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Rodrigo Almeida-Paes
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Gisela Costa
- Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Nelson Lima
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS (Associate Laboratory, Braga/Guimarães), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosely Maria Zancopé-Oliveira
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Manoel Marques Evangelista Oliveira
- Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Platform for Science, Technology and Innovation in Health-PICTIS, Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
5
|
Host–Pathogen Interactions between Metarhizium spp. and Locusts. J Fungi (Basel) 2022; 8:jof8060602. [PMID: 35736085 PMCID: PMC9224550 DOI: 10.3390/jof8060602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The progress in research on the interactions between Metarhizium spp. and locusts has improved our understanding of the interactions between fungal infection and host immunity. A general network of immune responses has been constructed, and the pathways regulating fungal pathogenicity have also been explored in depth. However, there have been no systematic surveys of interaction between Metarhizium spp. and locusts. The pathogenesis of Metarhizium comprises conidial attachment, germination, appressorial formation, and colonization in the body cavity of the host locusts. Meanwhile, the locust resists fungal infection through humoral and cellular immunity. Here, we summarize the crucial pathways that regulate the pathogenesis of Metarhizium and host immune defense. Conidial hydrophobicity is mainly affected by the contents of hydrophobins and chitin. Appressorial formation is regulated by the pathways of MAPKs, cAMP/PKA, and Ca2+/calmodulin. Lipid droplets degradation and secreted enzymes contributed to fungal penetration. The humoral response of locust is coordinated by the Toll pathway and the ecdysone. The regulatory mechanism of hemocyte differentiation and migration is elusive. In addition, behavioral fever and density-dependent population immunity have an impact on the resistance of hosts against fungal infection. This review depicts a prospect to help us understand host–pathogen interactions and provides a foundation for the engineering of entomopathogenic fungi and the discovery of insecticidal targets to control insect pests.
Collapse
|
6
|
Song XS, Xiao XM, Gu KX, Gao J, Ding SC, Zhou MG. The ASK1 gene regulates the sensitivity of Fusarium graminearum to carbendazim, conidiation and sexual production by combining with β 2-tubulin. Curr Genet 2020; 67:165-176. [PMID: 33130939 DOI: 10.1007/s00294-020-01120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022]
Abstract
β-tubulin, a component of microtubules, is involved in a wide variety of roles in cell shape, motility, intracellular trafficking and regulating intracellular metabolism. It has been an important fungicide target to control plant pathogen, for example, Fusarium. However, the regulation of fungicide sensitivity by β-tubulin-interacting proteins is still unclear. Here, ASK1 was identified as a β-tubulin interacting protein. The ASK1 regulated the sensitivity of Fusarium to carbendazim (a benzimidazole carbamate fungicide), and multiple cellular processes, such as chromatin separation, conidiation and sexual production. Further, we found the point mutations at 50th and 198th of β2-tubulin which caused carbendazim resistance decreased the binding between β2-tubulin and ASK1, resulting in the deactivation of ASK1. ASK1, on the other hand, competed with carbendazim to bind to β2-tubulin. The point mutation F167Y in β2-tubulin broke the intermolecular H-bonds and salt bridges between β2-tubulin and ASK1, which reduced the competitive effect of ASK1 to carbendazim and resulted in the similar carbendazim sensitivities in F167Y-ΔASK1 and F167Y. These findings have powerful implications for efforts to understand the interaction among β2-tubulin, its interacting proteins and fungicide, as well as to discover and develop new fungicide against Fusarium.
Collapse
Affiliation(s)
- Xiu-Shi Song
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue-Mei Xiao
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China
| | - Kai-Xin Gu
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China
| | - Jing Gao
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China
| | - Shao-Chen Ding
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China
| | - Ming-Guo Zhou
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Abstract
Lipid droplets (LDs) are fat storage organelles integral to energy homeostasis and a wide range of cellular processes. LDs physically and functionally interact with many partner organelles, including the ER, mitochondria, lysosomes, and peroxisomes. Recent findings suggest that the dynamics of LD inter-organelle contacts is in part controlled by LD intracellular motility. LDs can be transported directly by motor proteins along either actin filaments or microtubules, via Kinesin-1, Cytoplasmic Dynein, and type V Myosins. LDs can also be propelled indirectly, by hitchhiking on other organelles, cytoplasmic flows, and potentially actin polymerization. Although the anchors that attach motors to LDs remain elusive, other regulators of LD motility have been identified, ranging from modification of the tracks to motor co-factors to members of the perilipin family of LD proteins. Manipulating these regulatory pathways provides a tool to probe whether altered motility affects organelle contacts and has revealed that LD motility can promote interactions with numerous partners, with profound consequences for metabolism. LD motility can cause dramatic redistribution of LDs between a clustered and a dispersed state, resulting in altered organelle contacts and LD turnover. We propose that LD motility can thus promote switches in the metabolic state of a cell. Finally, LD motility is also important for LD allocation during cell division. In a number of animal embryos, uneven allocation results in a large difference in LD content in distinct daughter cells, suggesting cell-type specific LD needs.
Collapse
Affiliation(s)
- Marcus D Kilwein
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| | - M A Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| |
Collapse
|
8
|
Yang W, Wu H, Wang Z, Sun Q, Qiao L, Huang B. The APSES Gene MrStuA Regulates Sporulation in Metarhizium robertsii. Front Microbiol 2018; 9:1208. [PMID: 29922271 PMCID: PMC5996154 DOI: 10.3389/fmicb.2018.01208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/17/2018] [Indexed: 11/30/2022] Open
Abstract
The APSES family is a unique family of transcription factors with a basic helix-loop-helix structure (APSES: Asm1p, Phd1p, Sok2p, Efg1p, and StuAp), which are key regulators of cell development and sporulation-related processes. However, the functions of the APSES family of genes in the entomopathogenic fungus Metarhizium robertsii have not been reported. Here, we report the identification and characterization of the MrStuA gene, a member of the APSES family, in M. robertsii. The selected gene was identified as StuA in M. robertsii (MrStuA) because the gene product contains two conserved sequences, an APSES-type DNA-binding domain and a KilA DNA-binding domain, and has the highest homology with the StuA in the C-II clade of the APSES family. We found that the number of conidia produced by the ΔMrStuA strain was 94.45% lower than that in the wild type. Additionally, in the mutant, the conidia displayed an elongated shape, the sporulation was sparse and the phialide were slender. In addition, transcription levels of two central regulators of asexual development, AbaA and WetA, were significantly reduced in the mutant; furthermore, the transcription levels of other sporulation related genes, such as Mpk, Phi, Med, Aco, Flu, and FlbD, also decreased significantly. We also show that the median lethal time (LT50) of the mutant increased by 19%. This increase corresponded with a slower growth rate and an earlier conidia germination time compared to that of the wild strain. However, the resistance of the mutant to chemicals or physical stressors, such as ultraviolet radiation or heat, was not significantly altered. Our results indicate that in M. robertsii, MrStuA may play a crucial role in regulating sporulation as well as virulence, germination, and vegetative growth. This study improves our understanding of the impact of the transcription factor StuA on sporulation processes in filamentous fungi and provides a basis for further studies aimed at improving sporulation efficiency of these fungi for use as a biocontrol agent.
Collapse
Affiliation(s)
- Wenjing Yang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Hao Wu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Zhangxun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China.,School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qian Sun
- School of Transportation Engineering, Anhui Sanlian University, Hefei, China
| | - Lintao Qiao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|