1
|
Zheng Y, Chen M, Li X, Dai F, Gao Z, Deng Q, Fang S, Zhang S, Pan S. Four distinct isolates of a novel polymycovirus identified in Setosphaeria turcica. Arch Virol 2023; 168:189. [PMID: 37351692 DOI: 10.1007/s00705-023-05819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Isolation and analysis of double-stranded RNA (dsRNA) from the phytopathogenic fungus Setosphaeria turcica f. sp. zeae revealed the presence of a new double-stranded RNA (dsRNA) virus, tentatively named "Setosphaeria turcica polymycovirus 2" (StPmV2). The genome of StPmV2 consists of five segments (dsRNA1-5), ranging in size from 965 bp to 2462 bp. Each dsRNA contains one open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) with conserved terminal sequences. The putative protein encoded by dsRNA1 shows 64.52% amino acid sequence identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Cladosporium cladosporioides virus 1, which belongs to the family Polymycoviridae. dsRNAs 2-4 encode the putative coat protein, methyltransferase (MTR), and proline-alanine-serine-rich protein (PASrp), respectively, and dsRNA5 encodes a protein of unknown function. Phylogenetic analysis based on the RdRp protein indicated that StPmV2 clustered with members of the family Polymycoviridae and is therefore a new mycovirus belonging to the genus Polymycovirus in the family Polymycoviridae. In addition, three other distinct isolates of StPmV2 were identified: one isolated from S. turcica f. sp. zeae and two from S. turcica f. sp. sorghi. To our knowledge, this is the first report of a polymycovirus infecting both S. turcica f. sp. zeae and S. turcica f. sp. sorghi.
Collapse
Affiliation(s)
- Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Miaomiao Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Xiquan Li
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Zhongnan Gao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China.
| | - Shouhui Pan
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China.
| |
Collapse
|
2
|
Dahanayaka BA, Martin A. Multi-parental fungal mapping population study to detect genomic regions associated with Pyrenophora teres f. teres virulence. Sci Rep 2023; 13:9804. [PMID: 37328500 PMCID: PMC10275933 DOI: 10.1038/s41598-023-36963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
In recent years multi-parental mapping populations (MPPs) have been widely adopted in many crops to detect quantitative trait loci (QTLs) as this method can compensate for the limitations of QTL analyses using bi-parental mapping populations. Here we report the first multi-parental nested association mapping (MP-NAM) population study used to detect genomic regions associated with host-pathogenic interactions. MP-NAM QTL analyses were conducted on 399 Pyrenophora teres f. teres individuals using biallelic, cross-specific and parental QTL effect models. A bi-parental QTL mapping study was also conducted to compare the power of QTL detection between bi-parental and MP-NAM populations. Using MP-NAM with 399 individuals detected a maximum of eight QTLs with a single QTL effect model whilst only a maximum of five QTLs were detected with an individual bi-parental mapping population of 100 individuals. When reducing the number of isolates in the MP-NAM to 200 individuals the number of QTLs detected remained the same for the MP-NAM population. This study confirms that MPPs such as MP-NAM populations can be successfully used in detecting QTLs in haploid fungal pathogens and that the power of QTL detection with MPPs is greater than with bi-parental mapping populations.
Collapse
Affiliation(s)
- Buddhika A Dahanayaka
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| |
Collapse
|
3
|
Muñoz-Zavala C, Loladze A, Vargas-Hernández M, García-León E, Alakonya AE, Tovar-Pedraza JM, Goodwin PH, Leyva-Mir SG. Occurrence and Distribution of Physiological Races of Exserohilum turcicum in Maize-Growing Regions of Mexico. PLANT DISEASE 2023; 107:1054-1059. [PMID: 36089680 DOI: 10.1094/pdis-03-22-0626-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Turcicum leaf blight (TLB) is a common foliar disease of maize in Mexico that is caused by the fungal pathogen Exserohilum turcicum. The most effective management strategy against TLB is monogenic race-specific resistance. Among the 140 E. turcicum isolates from symptomatic leaves collected from maize fields in Mexico, 100 were obtained from tropical (Veracruz) and temperate areas (Estado de México) between 2010 and 2019, and 40 isolates were obtained from tropical (Sinaloa, Tamaulipas, Veracruz, and Chiapas), subtropical (Nayarit, Jalisco, and Guanajuato), and temperate areas (Estado de Mexico, Hidalgo, and Puebla) collected in 2019. All the isolates caused TLB symptoms on the positive control (ht4), showing that they were all pathogenic. Six physiological races of E. turcicum (2, 3, 23, 3N, 23N, and 123N) were identified based on resistant or susceptible responses displayed by five maize differential genotypes (A619Ht1, A619Ht2, A619Ht3, B68HtN, and A619ht4). The most common was race 23, accounting for 68% of the isolates, followed by races 23N, 123N, 3, 2, and 3N at 15, 8, 6, 2, and 1%, respectively. Race 123N was able to infect the greatest number of maize differential genotypes used in the study. Race 123N was detected in Sinaloa and Estado de México. Race 3 was detected in Nayarit and Jalisco. Race 2 was detected in Jalisco, Estado de México, and Veracruz, and race 3N was detected in Tamaulipas. Race 23 was equally dominant in the tropical, subtropical, and temperate regions, while race 123N was more common in the tropical environment, and race 23N was more common in the tropical and temperate environments. There was no evidence for shifts in the races between 2010 and 2019.
Collapse
Affiliation(s)
- Carlos Muñoz-Zavala
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco 56230, Estado de México, Mexico
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Estado de México, Mexico
| | - Alexander Loladze
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Estado de México, Mexico
| | - Mateo Vargas-Hernández
- Departamento de Suelos, Universidad Autónoma Chapingo, Texcoco 56230, Estado de México, Mexico
| | - Elizabeth García-León
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Valle del Fuerte, Guasave 81110, Sinaloa, Mexico
| | - Amos Emitati Alakonya
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Estado de México, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Sinaloa, Mexico
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Santos Gerardo Leyva-Mir
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco 56230, Estado de México, Mexico
| |
Collapse
|
4
|
Zheng Y, Yin S, Zhao Y, Li S, Lu Z, Li Z, Deng Q, Li Z, Zhang S, Fang S. Molecular and biological characteristics of a novel chrysovirus infecting the fungus phytopathogenic Setosphaeria turcica f.sp. sorghi. Virus Res 2023; 325:199037. [PMID: 36596382 DOI: 10.1016/j.virusres.2022.199037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
A new double-stranded RNA (dsRNA) virus has been identified in the filamentous fungus Setosphaeria turcica f.sp. sorghi, whose genome consists of four segments (dsRNA1-4). Each dsRNA carries single open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) containing strictly conserved termini. The putative protein encoded by dsRNA1 showed 80.50% identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Alternaria alternata chrysovirus 1 (AaCV1), belonging to the Chrysoviridae. dsRNA2 encodes the putative coat protein, while dsRNA3 and dsRNA4 respectively encode the hypothetical proteins of unknown functions. Phylogenetic analysis based on the RdRp protein indicated the virus clustered with members of the genus Betachrysovirus in the family Chrysoviridae. Based on the dsRNA profile, amino acid sequence comparisons, and phylogenetic analyses, the mycovirus is thought to be a new member of the family Chrysoviridae and designated as Setosphaeria turcica chrysovirus 1 (StCV1). Moreover, obvious differences were observed in the colony, mycelial and spore morphology between StCV1-infected and virus-cured strains of S. turcica f.sp. sorghi. StCV1 infection strongly reduced colony growth rate, spore production ability and virulence on host fungus. To our knowledge, this is the first report about mycovirus infecting S. turcica f.sp. sorghi and also the first chrysovirus infecting S. turcica.
Collapse
Affiliation(s)
- Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Shuangshuang Yin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Yinxiao Zhao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Siyu Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zhou Lu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zikuo Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zhanbiao Li
- MARA Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China; MARA Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
5
|
Anwer MA, Niwas R, Ranjan T, Mandal SS, Ansar M, Srivastava JN, Kumar J, Jain K, Kumari N, Bharti A. Molecular and Morphological Characterization of Exserohilum turcicum (Passerini) Leonard and Suggs Causing Northern Corn Leaf Blight of Maize in Bihar. Bioengineering (Basel) 2022; 9:403. [PMID: 36004928 PMCID: PMC9405478 DOI: 10.3390/bioengineering9080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Maize is considered the third most important cereal crop in Asia after rice and wheat. Many diseases affect this crop due to the cultivation of various hybrids. This research aimed to characterize the causative agent of northern corn leaf blight disease in Bihar, India, caused by Exserohilum turcicum (Passerini) Leonard and Suggs. Leaf samples were collected from infected fields in five maize growing districts of Bihar in 2020-2022. A total of 45 fungal isolates from 135 samples were examined for cultural, morphological, and molecular characteristics and were identified as E. turcicum. The isolates were grouped into four groups based on colony color, i.e., olivaceous brown, blackish brown, whitish black, and grayish, and into two groups based on regular and irregular margins. The conidial shapes were observed to be elongated and spindle-shaped with protruding hilum, with conidial septa ranging from 2-12. Similarly, conidial length varied from 52.94 μm to 144.12 μm. β-tubulin gene sequences analysis made it possible to verify the identities of fungal strains and the phylogenetic relationships of all isolates, which were clustered in the same clade. The β-tubulin gene sequences of all the isolates showed a high level of similarity (100%) with reference isolates from GenBank accession numbers KU670342.1, KU670344.1, KU670343.1, KU670341.1, and KU670340.1. The findings of this study will serve as a baseline for future studies and will help to minimize yield losses.
Collapse
Affiliation(s)
- Md Arshad Anwer
- Department of Plant Pathology, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| | - Ram Niwas
- Department of Plant Pathology, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| | - Tushar Ranjan
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| | - Shyam Sundar Mandal
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| | - Mohammad Ansar
- Department of Plant Pathology, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| | | | - Jitesh Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| | - Khushbu Jain
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| | - Neha Kumari
- Department of Plant Pathology, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| | - Aditya Bharti
- Department of Plant Pathology, Bihar Agricultural University, Sabour 813210, Bhagalpur, India
| |
Collapse
|