1
|
Hu S, Guo LC, Qiu YJ, Zhu QY, Zhang RP, Han PJ, Bai FY. Saccharomycopsis yichangensis sp. nov., a Novel Predacious Yeast Species Isolated From Soil. Yeast 2025. [PMID: 40391919 DOI: 10.1002/yea.4002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025] Open
Abstract
Two yeast strains belonging to the ascomycetous yeast genus Saccharomycopsis were isolated from soil collected from a forest in Wufeng Tujia Autonomous County, Yichang, Hubei province, China. Phylogenetic analyzes of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit rRNA gene showed that they closely related to S. fermentans and S. babjevae but differed from S. fermentans by 17 (3.09%, 15 substitutions and two gaps) and 30 (4.85%, 22 substitutions and eight gaps) mismatches, and from S. babjevae by 13 (2.39%, eight substitutions and five gaps) and 21 (3.46%, 14 substitutions and seven gaps) mismatches in the D1/D2 domain and ITS region, respectively. A phylogenomic analysis based on 1260 single-copy orthologs confirmed the close relationship of the new Chinese strains with S. fermentans and S. babjevae. The whole genome average nucleotide identity (ANI) values of the new strains with the two species are 85.7% and 86.9%, respectively. The results suggest that the two strains represent a novel species, for which the name Saccharomycopsis yichangensis sp. nov. (holotype strain CGMCC 2.7390) is proposed. The Fungal Names number is FN 572295. The novel yeast is homothallic and produces asci containing four spheroidal ascospores with an equatorial or subequatorial ledge. This species can prey on cells of Jamesozyma jinghongensis, Meyerozyma carpophila and Saccharomyces cerevisiae through invasive infection pegs.
Collapse
Affiliation(s)
- Shuang Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang-Chen Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Jie Qiu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qi-Yang Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Rij M, Kayacan Y, Bernardi B, Wendland J. Re-routing MAP kinase signaling for penetration peg formation in predator yeasts. PLoS Pathog 2024; 20:e1012503. [PMID: 39213444 PMCID: PMC11392346 DOI: 10.1371/journal.ppat.1012503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Saccharomycopsis yeasts are natural organic sulfur auxotrophs due to lack of genes required for the uptake and assimilation of sulfate/sulfite. Starvation for methionine induces a shift to a predatory, mycoparasitic life strategy that is unique amongst ascomycetous yeasts. Similar to fungal plant pathogens that separated from Saccharomycopsis more than 400 million years ago, a specialized infection structure called penetration peg is used for prey cell invasion. Penetration pegs are highly enriched with chitin. Here we demonstrate that an ancient and conserved MAP kinase signaling pathway regulates penetration peg formation and successful predation in the predator yeast S. schoenii. Deletion of the MAP kinase gene SsKIL1, a homolog of the Saccharomyces cerevisiae ScKSS1/ScFUS3 and the rice blast Magnaporthe oryzae MoPMK1 genes, as well as deletion of the transcription factor SsSTE12 generate non-pathogenic mutants that fail to form penetration pegs. Comparative global transcriptome analyses using RNAseq indicate loss of the SsKil1-SsSte12-dependent predation response in the mutant strains, while a methionine starvation response is still executed. Within the promoter sequences of genes upregulated during predation we identified a cis-regulatory element similar to the ScSte12 pheromone response element. Our results indicate that, re-routing MAP-kinase signaling by re-wiring Ste12 transcriptional control towards predation specific genes contributed to the parallel evolution of this predacious behaviour in predator yeasts. Consequently, we found that SsSTE12 is dispensable for mating.
Collapse
Affiliation(s)
- Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Yeseren Kayacan
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Beatrice Bernardi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
3
|
Rij M, Wendland J. Use of the Saccharomycopsis schoenii MET17 promoter for regulated heterologous gene expression. Curr Genet 2024; 70:9. [PMID: 38951203 PMCID: PMC11217035 DOI: 10.1007/s00294-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/24/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
The ability to regulate the expression of genes is a central tool for the characterization of fungal genes. This is of particular interest to study genes required for specific processes or the effect of genes expressed only under specific conditions. Saccharomycopsis species show a unique property of necrotrophic mycoparasitism that is activated upon starvation. Here we describe the use of the MET17 promoter of S. schoenii as a tool to regulate gene expression based on the availability of methionine. Conditional expression was tested using lacZ and GFP reporter genes. Gene expression could be strongly down-regulated by the addition of methionine or cysteine to the growth medium and upregulated by starvation for methionine. We used X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) to detect lacZ-expression in plate assays and ONPG (ortho-nitrophenyl-β-galactopyranoside) as a substrate for β-galactosidase in liquid-phase assays. For in vivo expression analyses we used fluorescence microscopy for the detection and localization of a MET17-driven histone H4-GFP reporter gene. With these assays we demonstrated the usefulness of the MET17 promoter to regulate expression of genes based on methionine availability. In silico analyses revealed similar promoter motifs as found in MET3 genes of Saccharomyces cerevisiae and Ashbya gossypii. This suggests a regulation of the MET17 promoter by CBF1 and MET31/MET32 in conjunction with the transcriptional activator MET4, which were also identified in the S. schoenii genome.
Collapse
Affiliation(s)
- Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
| |
Collapse
|
4
|
Dost C, Michling F, Kaimenyi D, Rij M, Wendland J. Isolation of Saccharomycopsis species from plant material. Microbiol Res 2024; 283:127691. [PMID: 38492364 DOI: 10.1016/j.micres.2024.127691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Saccharomycopsis species are natural organic sulphur auxotrophs. Their genomes do not encode genes for the uptake and assimilation of sulphate and thus these species cannot grow on media lacking e.g. methionine. Due to the similarity between sulphate and selenate, uptake and assimilation of selenate occurs through the same pathway starting from sulphate transporters encoded by the homologs of the SUL1 and SUL2 genes in S. cerevisiae. Lack of these transporters renders Saccharomycopsis species resistant to selenate levels that are toxic to other microorganisms. We used this feature to enrich environmental samples for Saccharomycopsis species. This led to the isolation of S. schoenii, S. lassenensis and a hitherto undescribed Saccharomycopsis species with limited by-catch of other yeasts, mainly belonging to Metschnikowia and Hanseniaspora. We performed growth and predation assays to characterize the potential of these new isolates as predacious yeasts. Most Saccharomycopsis species are temperature sensitive and cannot grow at 37°C; with the exception of S. lassenensis strains. Predation assays with S. schoenii and S. cerevisiae as prey indicated that predation was enhanced at 20°C compared to 30°C. We crossed an American isolate of S. schoenii with our German isolate using marker directed breeding. Viable progeny indicated that both strains are interfertile and belong to the same biological species. S. lassenensis is heterothallic, while S. schoenii and the new Saccharomycopsis isolate, for which we suggest the name S. geisenheimensis sp. nov., are homothallic.
Collapse
Affiliation(s)
- Carmen Dost
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Florian Michling
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Davies Kaimenyi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, Geisenheim 65366, Germany.
| |
Collapse
|