1
|
Zheng Y, Lee EH, Lee SY, Lee Y, Shin KO, Park K, Kang IJ. Morus alba L. root decreases melanin synthesis via sphingosine-1-phosphate signaling in B16F10 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115848. [PMID: 36272492 DOI: 10.1016/j.jep.2022.115848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. has long been used for beauty in many Asian countries and regions, including anti-aging and hyperpigmentation. AIM OF THE STUDY This study aimed at the inhibitory effect of Morus alba L. root on melanogenesis in B16F10 melanoma cells and the mechanism involved. MATERIALS AND METHODS This study evaluated the anti-melanogenic effect of Morus alba L. root extract (MAR) on B16F10 melanoma cells by assessing cell viability, melanin accumulation, cellular tyrosinase activity, intra/inter-cellular S1P levels, cellular S1P-related metabolic enzyme activity, and western blot analysis. In addition, the potential S1P lyase (S1PL) inhibitory constituents in MAR were identified by LC-MS/MS. RESULTS Without affecting the viability of B16F10 melanoma cells, MAR inhibited intracellular tyrosinase activity in a dose-dependent manner, thereby reducing the accumulation of melanin. MAR also downregulated the expression level of MITF via activating the ERK signaling pathway. Furthermore, MAR increased the intra/inter-cellular S1P by inhibiting S1PL. Several compounds with inhibitory S1PL activity have been identified in MAR, such as mulberroside A and oxyresveratrol. CONCLUSIONS The anti-melanogenic effects of MAR mainly involve promoting MITF degradation mediated via S1P-S1PR3-ERK signaling through increasing cellular S1P levels by inhibiting S1PL activity.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Eun-Hye Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - So-Yeon Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Yeji Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyungho Park
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
2
|
Additive Effect of a Combination of Artocarpus lakoocha and Glycyrrhiza glabra Extracts on Tyrosinase Inhibition in Melanoma B16 Cells. Pharmaceuticals (Basel) 2020; 13:ph13100310. [PMID: 33066628 PMCID: PMC7602378 DOI: 10.3390/ph13100310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 11/16/2022] Open
Abstract
Artocarpus lakoocha (Al) and Glycyrrhiza glabra (Gg) extracts have been reported to show tyrosinase inhibitory activity and melanin pigment reduction. This is the first study to assess the combination of Al and Gg extracts in enhancing inhibition of tyrosinase and reduction of melanin pigments. Al and Gg extracted by maceration in 70% and 95% ethanol were analyzed for oxyresveratrol and glabridin using Ultra High Performance Liquid Chromatography. Extracts of Al and Gg singly and combinations of Al95 and Gg95 were tested for cytotoxicity, tyrosinase inhibitory activity, and reduction of melanin pigments in melanoma B16 cells. Al95 had higher antioxidant, tyrosinase inhibitory activity and reduced more melanin pigments in B16 cells compared to Al70, and exhibited higher levels of oxyresveratrol. Gg95 inhibited oxidative stress and mushroom tyrosinase better than Gg70, and exhibited higher levels of glabridin. Combinations of Al95 and Gg95 at various ratios (concentration of 0.1 mg/mL) were not cytotoxic to B16 cells. Interestingly, Al95 and Gg95 combined at a ratio 9:1 reduced melanin pigment up to 53% in B16 cells. This combination of Al95 and Gg95 extracts exhibited the additive effect of reducing melanin pigments by suppressing the expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein-2 (TRP-2) in B16 cells. The combination of Al and Gg extracts could be developed as skin care products for hyperpigmentation treatment.
Collapse
|
3
|
Zhou S, Shao Y, Fu J, Xiang L, Zheng Y, Li W. Characterization and Quantification of Taxifolin Related Flavonoids in Larix olgensis Henry Var. koreana Nakai Extract Analysis and its Antioxidant Activity Assay. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.534.545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Shin JS, Cho JH, Lee H, Jeong HS, Kim MK, Yun HY, Kwon NS, Kim DS. Dual hypopigmentary effects of punicalagin via the ERK and Akt pathways. Biomed Pharmacother 2017; 92:122-127. [DOI: 10.1016/j.biopha.2017.05.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
|
5
|
Adachi SI, Nihei KI, Ishihara Y, Yoshizawa F, Yagasaki K. Anti-hyperuricemic effect of taxifolin in cultured hepatocytes and model mice. Cytotechnology 2017; 69:329-336. [PMID: 28101741 DOI: 10.1007/s10616-016-0061-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 11/28/2022] Open
Abstract
Hyperuricemia is recognized as an important risk factor for gout. High dietary intake of purine-rich foods such as meats and sea foods increases uric acid (UA) levels in the blood. Taxifolin present in Siberian larch and strawberries has been reported to possess health promoting activities including anti-oxidant effect. In this study, we examined anti-hyperuricemic effect of taxifolin in both cultured hepatocytes and hyperuricemic model mice. In cultured AML12 hepatocytes, taxifolin significantly suppressed UA production dose- and time-dependently. In mice with hyperuricemia induced by concurrent administration of guanosine-5'-monophosphate and inosine-5'-monophosphate, oral administration of taxifolin suppressed the increases in plasma and liver UA levels. In addition, it also suppressed hepatic xanthine oxidase (XO) activity. Thus, anti-hyperuricemic effect of taxifolin could be explained, at least partly, by suppressing UA production via inhibition of XO activity in the liver. These results suggest that taxifolin possesses a potent hypouricemic effect and it could be a potential candidate for an anti-hyperuricemic phytochemical.
Collapse
Affiliation(s)
- Shin-Ichi Adachi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Ken-Ichi Nihei
- Faculty of Agriculture, Utsunomiya University, Tochigi, 321-8505, Japan.,Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Yoshiyuki Ishihara
- Strawberry Research Center, Tochigi Prefectural Agricultural Experiment Station, Tochigi, 328-0007, Japan
| | - Fumiaki Yoshizawa
- Faculty of Agriculture, Utsunomiya University, Tochigi, 321-8505, Japan.,Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Kazumi Yagasaki
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan.
| |
Collapse
|
6
|
Inhibitory effect of the Larix sibirica and its various flavonoids on the IgE-stimulated mast cell activation and anaphylaxis. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Yamauchi K, Mitsunaga T, Itakura Y, Batubara I. Extracellular melanogenesis inhibitory activity and the structure-activity relationships of ugonins from Helminthostachys zeylanica roots. Fitoterapia 2015; 104:69-74. [PMID: 25979512 DOI: 10.1016/j.fitote.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 11/28/2022]
Abstract
Ugonin J, K, and L, which are luteolin derivatives, were isolated from Helminthostachys zeylanica roots by a series of chromatographic separations of a 50% ethanol/water extract. They were identified using nuclear magnetic resonance (NMR), ultraviolet (UV) spectra, and ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF-MS). In this study, the intra and extracellular melanogenic activity of the ugonins were determined using B16 melanoma cells. The results showed that ugonin J at 12.5, 25, and 50μM reduced extracellular melanin contents to 75, 16, and 14%, respectively, compared to the control. This indicates that ugonin J showed a stronger activity than arbutin, used as the positive control. Moreover, ugonin K showed a more potent inhibition with 19, 8, and 9% extracellular melanin reduction at the same concentrations, than that shown by ugonin J. In contrast, ugonin L did not inhibit intra- or extracellular melanogenic activity. Furthermore, in order to investigate the structure-activity relationships of the ugonins, the intra- and extracellular melanogenic activity of luteolin, methylluteolin, quercetin, eriodictyol, apigenin, and chrysin were determined. Consequently, it was suggested that the catechol and flavone skeleton of ugonin K is essential for the extracellular melanogenic inhibitory activity, and the low polarity substituent groups on the A ring of ugonin K may increase the activity.
Collapse
Affiliation(s)
- Kosei Yamauchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| | - Tohru Mitsunaga
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan.
| | - Yuki Itakura
- Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Biopharmaca Research Center, Bogor Agricultural University, Jl. Taman Kencana No. 3, Kampus IPB Taman Kencana, Bogor 16151, Indonesia.
| |
Collapse
|
8
|
Yamauchi K, Mitsunaga T, Inagaki M, Suzuki T. Quercetin derivatives regulate melanosome transportation via EPI64 inhibition and elongate the cell shape of B16 melanoma cells. Biomed Pharmacother 2015; 70:206-12. [PMID: 25776502 DOI: 10.1016/j.biopha.2015.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/25/2015] [Indexed: 10/24/2022] Open
Abstract
4'-O-β-D-glucopyranosyl-quercetin-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside (3C4'GQ), first isolated from Helminthostachys zeylanica root extract, was synthesized as a compound that stimulates intracellular melanogenesis. 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) were synthesized as compounds that enhance extracellular melanin formation. The formation of dendrites and the expression of EBP50-PDZ interactor of 64 kDa (EPI64) relating to melanin transportation were investigated using B16 melanoma cells treated with 3C4'GQ, 3MQ, or 34'7TMQ in order to understand the mechanism underlying the observed activities. The influence of 3C4'GQ on the increase of intracellular melanin contents enhanced the expression of EPI64, exhibited no dendrite elongation activity, and inhibited melanin transportation. On the other hand, the increase of extracellular melanin content by 3MQ and 34'7TMQ inhibited the expression of EPI64 and formed elongated cells to stimulate melanin transportation.
Collapse
Affiliation(s)
- Kosei Yamauchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| | - Tohru Mitsunaga
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan.
| | - Mizuho Inagaki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| | - Tohru Suzuki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| |
Collapse
|
9
|
Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punica granatum (pomegranate) fruit extracts on melanin production. Fitoterapia 2014; 97:164-71. [DOI: 10.1016/j.fitote.2014.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/25/2022]
|
10
|
Yamauchi K, Mitsunaga T, Inagaki M, Suzuki T. Synthesized quercetin derivatives stimulate melanogenesis in B16 melanoma cells by influencing the expression of melanin biosynthesis proteins MITF and p38 MAPK. Bioorg Med Chem 2014; 22:3331-40. [DOI: 10.1016/j.bmc.2014.04.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
|
11
|
Kamagaju L, Morandini R, Bizuru E, Nyetera P, Nduwayezu JB, Stévigny C, Ghanem G, Duez P. Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:824-34. [PMID: 23439030 DOI: 10.1016/j.jep.2013.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/17/2013] [Accepted: 02/01/2013] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal medicines provide an interesting, largely unexplored source for the development of potential new drugs and skin-care cosmetics. Some herbal extracts are known to be inhibitors of melanin formation, sometimes more potent than the classical inhibitors, hydroquinone/arbutin or kojic acid, and are not associated with melanocytes cytotoxicity or mutagenicity. Such plants are used in traditional medicine in many countries, particularly in Africa, for skin lightening. AIM OF THE STUDY To evaluate in vitro the ability of Rwandese medicinal plants, traditionally used for the treatment of skin (discoloration and attenuation of discolored spots), to modulate pigmentation and tyrosinase activity. MATERIALS AND METHODS Based on an ethnopharmacological survey, five herbs [Brillantaisia cicatricosa Lindau (Acanthaceae), Chenopodium ugandae (Aellen) Aellen (Chenopodiaceae), Dolichopentas longiflora Oliv. (Rubiaceae), Protea madiensis Oliv. (Proteaceae) and Sesamum angolense Welw. (Pedaliaceae)] were selected. Twenty-seven extracts, obtained by treating the herbs with increasing polarities solvents, were investigated for their effects on cell viability (MTT test) and on pigmentation: inhibition of the enzyme tyrosinase (colorimetry of reaction products, measurement of enzyme activity, TLC-autography; studies on crude cellular extracts obtained from normal melanocytes and on a mushroom tyrosinase) and measurement of melanogenesis by human melanoma cells. RESULTS None of the tested plant extracts were cytotoxic on tested human melanoma cell lines, except for Dolichopentas longiflora (IC50 of leaves n-hexane extract, 4μg/ml for MM028 and 4.5μg/ml for MM001; IC50 of roots ethyl acetate extract, 0.8μg/ml for MM028 and 3.9μg/ml for MM001). Almost all extracts inhibited melanogenesis in a melanoma whole cells overall pigmentation assay, a model reflecting the entire cycle of melanogenesis. All the Protea madiensis extracts quite strongly inhibited melanogenesis and, surprisingly, one of the Dolichopentas longiflora leaves extracts was found to increase melanogenesis. These results were confirmed by the modulation of pigmentation reactions by crude cellular extracts obtained from normal melanocytes; interestingly, one of the extracts (Dolichopentas longiflora ethyl acetate extract) is even more active (61% at 500μg/ml) than kojic acid (<3% at 142μg/ml and 68% at 1421μg/ml). In a mushroom tyrosinase inhibition assay, data obtained on some extracts fairly agree with pigmentation inhibition measured on melanocytes proteins as, for example, the methanol extract of Protea madiensis. While a few others extract display discording data, this probably reflects either differences between human and mushroom tyrosinase, interference with melanocytes enzymes at later steps than tyrosinase or the simultaneous presence of compounds with conflicting activities in a given extract. CONCLUSIONS Ethnopharmacological data represent an efficient approach to discover active herbs. Some of the selected medicinal plants clearly show potent tyrosinase inhibitions while one extract significantly increases cell pigmentation; one extract contains potent growth melanocytes inhibitors.
Collapse
Affiliation(s)
- Léocadie Kamagaju
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine-CP 205/9, Bd du Triomphe, 1050 Bruxelles, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|