1
|
Sarker DK, Ray P, Dutta AK, Rouf R, Uddin SJ. Antidiabetic potential of fenugreek ( Trigonella foenum-graecum): A magic herb for diabetes mellitus. Food Sci Nutr 2024; 12:7108-7136. [PMID: 39479631 PMCID: PMC11521722 DOI: 10.1002/fsn3.4440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/17/2024] [Indexed: 11/02/2024] Open
Abstract
Fenugreek (Trigonella foenum-graecum) is a widely grown dietary herb in Asia, and its seeds are traditionally used for several diseases, including diabetes. The seeds and leaves possess a variety of compounds that play an important role in regulating their hypoglycemic effect. However, so far, no extensive systematic review exists on its antidiabetic effect, highlighting the molecular mechanisms and isolated compounds. The purpose of this review is to summarize the preclinical and clinical antidiabetic properties of fenugreek and its isolated compounds by focusing on underlying mechanisms. PubMed, Google Scholar, Science Direct, and Scopus databases were searched to retrieve articles until June, 2024. Preclinical studies demonstrated that the antidiabetic effect of fenugreek was mostly associated with enhanced glucose transporter type-4 (GLUT4) translocation and hexokinase activity, decreased glucose-6-phosphatase and fructose-1,6-bisphosphatase activities, inhibited α-amylase and maltase activities, protected β cells, and increased insulin release. Furthermore, few studies have reported its role as a glucagon-like peptide-1 (GLP-1) modulator, 5'-AMP-activated kinase (AMPK) activator, and dipeptidyl peptidase-IV (DPP-IV) inhibitor. Further clinical trials showed that fenugreek seeds improved blood glucose levels, insulin resistance, insulin sensitivity, and lipid profiles. This study highlights significant evidence of the antidiabetic effect of fenugreek and its isolated compounds; therefore, it could be a potential therapy for diabetes.
Collapse
Affiliation(s)
- Dipto Kumer Sarker
- Pharmacy Discipline, Life Science SchoolKhulna UniversityKhulnaBangladesh
| | - Pallobi Ray
- Pharmacy Discipline, Life Science SchoolKhulna UniversityKhulnaBangladesh
| | | | - Razina Rouf
- Department of Pharmacy, Faculty of Life ScienceBangabandhu Sheikh Mujibur Rahman Science & Technology UniversityGopalganjBangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science SchoolKhulna UniversityKhulnaBangladesh
| |
Collapse
|
2
|
Zhong H, Liu S, Zhu J, Xu TH, Yu H, Wu L. Elucidating the role of blood metabolites on pancreatic cancer risk using two-sample Mendelian randomization analysis. Int J Cancer 2024; 154:852-862. [PMID: 37860916 PMCID: PMC10843029 DOI: 10.1002/ijc.34771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an uncommon but highly fatal malignancy. Identifying causal metabolite biomarkers offers an opportunity to facilitate effective risk assessment strategies for PDAC. In this study, we performed a two-sample Mendelian randomization (MR) study to characterize the potential causal effects of metabolites in plasma on PDAC risk. Genetic instruments were determined for a total of 506 metabolites from one set of comprehensive genome-wide association studies (GWAS) involving 913 individuals of European ancestry from the INTERVAL/EPIC-Norfolk cohorts. Another set of genetic instruments was developed for 483 metabolites from an independent GWAS conducted with 8299 individuals of European ancestry from the Canadian Longitudinal Study on Aging (CLSA) cohort. We analyzed GWAS data of the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), comprising 8275 PDAC cases and 6723 controls of European ancestry. The association of metabolites with PDAC risk was assessed using the inverse-variance weighted (IVW) method, and complemented with sensitivity analyses of MR-Egger and MR-PRESSO tests. Potential side effects of targeting the identified metabolites for PDAC intervention were further evaluated by a phenome-wide MR (Phe-MR) analysis. Forty-four unique metabolites were identified to be significantly associated with PDAC risk, of which four top-ranking metabolites (X: 12798, X: 11787, X: 11308 and X: 19141) showed replication evidence when using instruments developed from both two cohorts. Our results highlight novel blood metabolites related to PDAC risk, which may help prioritize metabolic features for PDAC mechanistic research and further evaluation of their potential role in PDAC risk assessment.
Collapse
Affiliation(s)
- Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Shuai Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Teddy H. Xu
- Torrey Pines High School, San Diego, CA, USA
| | - Herbert Yu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
3
|
Sharma M, Haye A, Ansari M, Saini A, Ahmed Z, Munjal K, Shamsi Y. Polyherbal formulation improves glucose-lipid metabolism and prevent hepatotoxicity in streptozotocin-induced diabetic rats: Plausible role of IRS-PI3K-Akt-GLUT2 signaling. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Lu Y, Mao J, Han X, Zhang W, Li Y, Liu Y, Li Q. Downregulated hypoxia-inducible factor 1α improves myoblast differentiation under hypoxic condition in mouse genioglossus. Mol Cell Biochem 2021; 476:1351-1364. [PMID: 33389500 DOI: 10.1007/s11010-020-03995-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/01/2020] [Indexed: 10/22/2022]
Abstract
The treatment of obstructive sleep apnea-hypopnea syndrome targets the narrow anatomic structure of the upper airway (UA) and lacks an effective therapy for UA dilator muscle dysfunction. Long-term hypoxia can cause damage to UA dilator muscles and trigger a vicious cycle. We previously confirmed that hypoxia-inducible factor 1α (HIF-1α) upregulation mediates muscle fatigue in hypoxia condition, but the underlying mechanism remains to be determined. The present study investigated the intrinsic mechanisms and related pathways of HIF-1α that affect myoblast differentiation, with an aim to search for compounds that have protective effects in hypoxic condition. Differentiation of myoblasts was induced under hypoxia, and we found that hypoxia significantly inhibits the differentiation of myoblasts, damages the ultrastructure of mitochondria, and reduces the expression of myogenin, PGC-1β and pAMPKα1. HIF-1α has a negative regulation effect on AMPK. Downregulation of HIF-1α increases the expression of the abovementioned proteins, promotes the differentiation of myoblasts, and protects mitochondrial integrity. In addition, mitochondrial biogenesis occurs during myogenic differentiation. Inhibition of the AMPK pathway inhibits mitochondrial biogenesis, decreases the level of PGC-1β, and increases apoptosis. Resveratrol dimer can reverse the mitochondrial damage induced by AMPK pathway inhibition and decrease myoblast apoptosis. Our results provided a regulatory mechanism for hypoxic injury in genioglossus which may contribute to the pathogenesis and treatment of OSAHS.
Collapse
Affiliation(s)
- Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Jiaqi Mao
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
- Department of Endodontics, Stomatological Hospital, Hebei Medical University, 383 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Xinxin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
| | - Yuanyuan Li
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China
- Department of Pediatric Dentistry, Shanghai Stomatological Hospital, Fudan University, 356 East Beijing Road, Shanghai, 200001, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China.
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China.
| | - Qiang Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, No.356 East Beijing Road, Shanghai, 200001, China.
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, 2 Tianjin Road, Shanghai, 200001, China.
| |
Collapse
|
6
|
Yang J, Ran Y, Yang Y, Song S, Wu Y, Qi Y, Gao Y, Li G. 4-Hydroxyisoleucine Alleviates Macrophage-Related Chronic Inflammation and Metabolic Syndrome in Mice Fed a High-Fat Diet. Front Pharmacol 2021; 11:606514. [PMID: 33551809 PMCID: PMC7858251 DOI: 10.3389/fphar.2020.606514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023] Open
Abstract
In obesity, macrophages and other immune cells accumulate in organs affected by insulin, leading to chronic inflammation and insulin resistance. 4-Hydroxyisoleucine (4-HIL) is a non-protein amino acid found in fenugreek seeds. 4-HIL enhances insulin sensitivity, but its mechanism is still unclear. In this study, 4-HIL intervention reduced weight gain, liver steatosis, and dyslipidemia; moreover, it increased systemic insulin sensitivity and improved insulin resistance in mice. Importantly, after administration, the accumulation of M1 like CD11c+ macrophages and inflammation in the liver and adipose tissue were reduced in the mice. 4-HIL also reduced the proportion of CD11c+ macrophages among bone marrow-derived macrophages, which were induced in vitro. These observations demonstrate a new role of 4-HIL in insulin resistance in hepatocytes and adipocytes. 4-HIL inhibits obesity-related insulin resistance by reducing inflammation and regulating the state of M1/M2 macrophages.
Collapse
Affiliation(s)
- Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunhui Ran
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yonghui Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuyi Song
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Basit F, de Vries IJM. Dendritic Cells Require PINK1-Mediated Phosphorylation of BCKDE1α to Promote Fatty Acid Oxidation for Immune Function. Front Immunol 2019; 10:2386. [PMID: 31681280 PMCID: PMC6803436 DOI: 10.3389/fimmu.2019.02386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023] Open
Abstract
Dendritic cell (DCs) activation by Toll-like receptor (TLR) agonist induces robust metabolic rewiring toward glycolysis. Recent findings in the field identified mechanistic details governing these metabolic adaptations. However, it is unknown whether a switch to glycolysis from oxidative phosphorylation (OXPHOS) is a general characteristic of DCs upon pathogen encounter. Here we show that engagement of different TLR triggers differential metabolic adaptations in DCs. We demonstrate that LPS-mediated TLR4 stimulation induces glycolysis in DCs. Conversely, activation of TLR7/8 with protamine-RNA complex, pRNA, leads to an increase in OXPHOS. Mechanistically, we found that pRNA stimulation phosphorylates BCKDE1α in a PINK1-dependent manner. pRNA stimulation increased branched-chain amino acid levels and increased fatty acid oxidation. Increased FAO and OXPHOS are required for DC activation. PINK1 deficient DCs switch to glycolysis to maintain ATP levels and viability. Moreover, pharmacological induction of PINK1 kinase activity primed immunosuppressive DC for immunostimulatory function. Our findings provide novel insight into differential metabolic adaptations and reveal the important role of branched-chain amino acid in regulating immune response in DC.
Collapse
Affiliation(s)
- Farhan Basit
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Jing X, Wang X, Zhang W, An J, Luo P, Nie Y, Xu Y. Highly Regioselective and Stereoselective Hydroxylation of Free Amino Acids by a 2-Oxoglutarate-Dependent Dioxygenase from Kutzneria albida. ACS OMEGA 2019; 4:8350-8358. [PMID: 31459923 PMCID: PMC6648376 DOI: 10.1021/acsomega.9b00983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/30/2019] [Indexed: 05/13/2023]
Abstract
Hydroxyl amino acids have tremendous potential applications in food and pharmaceutical industries. However, available dioxygenases are limited for selective and efficient hydroxylation of free amino acids. Here, we identified a 2-oxoglutarate-dependent dioxygenase from Kutzneria albida by gene mining and characterized the encoded protein (KaPH1). KaPH1 was estimated to have a molecular weight of 29 kDa. The optimal pH and temperature for its l-proline hydroxylation activity were 6.5 and 30 °C, respectively. The K m and k cat values of KaPH1 were 1.07 mM and 0.54 s-1, respectively, for this reaction by which 120 mM l-proline was converted to trans-4-hydroxy-l-proline with 92.8% yield (3.93 g·L-1·h-1). EDTA, [1,10-phenanthroline], Cu2+, Zn2+, Co2+, and Ni2+ inhibited this reaction. KaPH1 was also active toward l-isoleucine for 4-hydroxyisoleucine synthesis. Additionally, the unique biophysical features of KaPH1 were predicted by molecular modeling whereby this study also contributes to our understanding of the catalytic mechanisms of 2-oxoglutarate-dependent dioxygenases.
Collapse
Affiliation(s)
- Xiaoran Jing
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinye Wang
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenli Zhang
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianhong An
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pengjie Luo
- China
National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, 37 Guangqu Road, Beijing 100022, China
- E-mail: (P.L.)
| | - Yao Nie
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- E-mail: (Y.N.)
| | - Yan Xu
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
9
|
Theaflavins Improve Insulin Sensitivity through Regulating Mitochondrial Biosynthesis in Palmitic Acid-Induced HepG2 Cells. Molecules 2018; 23:molecules23123382. [PMID: 30572687 PMCID: PMC6320999 DOI: 10.3390/molecules23123382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022] Open
Abstract
Theaflavins, the characteristic and bioactive polyphenols in black tea, possess the potential improving effects on insulin resistance-associated metabolic abnormalities, including obesity and type 2 diabetes mellitus. However, the related molecular mechanisms are still unclear. In this research, we investigated the protective effects of theaflavins against insulin resistance in HepG2 cells induced by palmitic acid. Theaflavins significantly increased glucose uptake of insulin-resistant cells at noncytotoxic doses. This activity was mediated by upregulating the total and membrane bound glucose transporter 4 protein expressions, increasing the phosphor-Akt (Ser473) level, and decreasing the phosphorylation of IRS-1 at Ser307. Moreover, theaflavins were found to enhance the mitochondrial DNA copy number, down-regulate the PGC-1β mRNA level and increase the PRC mRNA expression. Mdivi-1, a selective mitochondrial division inhibitor, could attenuate TFs-induced promotion of glucose uptake in insulin-resistant HepG2 cells. Taken together, these results suggested that theaflavins could improve hepatocellular insulin resistance induced by free fatty acids, at least partly through promoting mitochondrial biogenesis. Theaflavins are promising functional food ingredients and medicines for improving insulin resistance-related disorders.
Collapse
|
10
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Gannon NP, Schnuck JK, Vaughan RA. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Mol Nutr Food Res 2018; 62:e1700756. [PMID: 29377510 DOI: 10.1002/mnfr.201700756] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease.
Collapse
Affiliation(s)
| | - Jamie K Schnuck
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, NC
| |
Collapse
|
12
|
Gautam S, Ishrat N, Yadav P, Singh R, Narender T, Srivastava AK. 4-Hydroxyisoleucine attenuates the inflammation-mediated insulin resistance by the activation of AMPK and suppression of SOCS-3 coimmunoprecipitation with both the IR-β subunit as well as IRS-1. Mol Cell Biochem 2016; 414:95-104. [PMID: 26887316 DOI: 10.1007/s11010-016-2662-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/03/2016] [Indexed: 11/29/2022]
Abstract
It is known that 4-hydroxyisoleucine (4-HIL) from seeds of Trigonella foenum-graecum has beneficial effects on low-grade inflammation; therefore, the insulin signaling as well as the anti-inflammatory effects of 4-HIL in TNF-α-induced insulin resistance in C2C12 myotubes was studied with an aim to dissect out the mechanism(s) of the inflammation-mediated insulin resistance. TNF-α suppressed insulin-stimulated glucose transport rate and increased Ser-307 phosphorylation of insulin receptor substrate-1 (IRS-1). However, the treatment of 4-hydroxyisoleucine enhanced insulin-stimulated glucose transport rate via the activation of AMP-activated protein kinase (AMPK) in a dose-dependent manner. 4-HIL also increases the tyrosine phosphorylation of both IR-β and IRS-1. Moreover, coimmunoprecipitation (Co-IP) of insulin receptor-β (IR-β) subunit with IRS-1 was found to be increased by 4-hydroxyisoleucine. Concentration of SOCS-3 protein and coimmunoprecipitation of SOCS-3 protein with both the IR-β subunit as well as IRS-1 was found to be decreased by 4-HIL. We conclude that the 4-hydroxyisoleucine reverses the insulin resistance by the activation of AMPK and suppression of SOCS-3 coimmunoprecipitation with both the IR-β subunit as well as IRS-1.
Collapse
Affiliation(s)
- Sudeep Gautam
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226021, India
| | - Nayab Ishrat
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226021, India
| | - Pragya Yadav
- Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226021, India
| | - Rohit Singh
- Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226021, India
| | - Tadigoppula Narender
- Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226021, India
| | - Arvind K Srivastava
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226021, India.
| |
Collapse
|
13
|
Hua Y, Ren SY, Guo R, Rogers O, Nair RP, Bagchi D, Swaroop A, Nair S. Furostanolic saponins from Trigonella foenum-graecum
alleviate diet-induced glucose intolerance and hepatic fat accumulation. Mol Nutr Food Res 2015. [DOI: 10.1002/mnfr.201500197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| | - Sidney Y. Ren
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| | - Rui Guo
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| | - Olivia Rogers
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| | - Rama P. Nair
- Research & Development Division, Nutriwyo LLC; Laramie WY USA
| | - Debasis Bagchi
- Department of Pharmacological and Pharmaceutical Sciences; College of Pharmacy; University of Houston; Houston TX USA
- Research & Development Division; Cepham Inc; Piscataway NJ USA
| | - Anand Swaroop
- Research & Development Division; Cepham Inc; Piscataway NJ USA
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| |
Collapse
|
14
|
Du YP, Song GY, Wang FJ, Ren LP, Liu YQ, Zhang YN, Qi HQ, Ding HX. Effect of oxymatrine on insulin resistance in patients with type 2 diabetes mellitus. Shijie Huaren Xiaohua Zazhi 2015; 23:2555-2561. [DOI: 10.11569/wcjd.v23.i16.2555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the influence of oxymatrine on insulin resistance in patients with type 2 diabetes mellitus and the mechanism involved.
METHODS: This was a prospective randomized controlled clinical study. Patients with type 2 diabetes mellitus were divided into either an oxymatrine treatment group or an untreated group. Glucose oxidase method was used to detect serum fasting blood glucose (FBG) and fasting insulin (FINS). The homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of insulin sensitivity index (HOMA-ISI) were also detected. ELISA was carried out to detect the serum levels of reactive oxygen species (ROS) and tumor necrosis factor-α (TNF-α). Western blot was used to detect the expression of protein kinase B (AKT), p-AKT, glycogen synthase kinase-3α/β (GSK3α/β), and p-GSK3α/β proteins.
RESULTS: FBG, FINS and HOMA-IR significantly decreased and HOMA-ISI increased in the oxymatrine treatment group compared with the untreated group (P < 0.05). Serum levels of ROS and TNF-α in the oxymatrine treatment group decreased significantly compared with the untreated group (P < 0.05). Western blot analysis showed that the total protein levels of AKT and GSK3α/β were unchanged (P > 0.05), but the expression of p-AKT and p-GSK3α/β significantly increased in the oxymatrine treatment group compared with the untreated group (P < 0.05).
CONCLUSION: Oxymatrine can reduce FBG and FINS, and improve insulin resistance by reducing the production of serum ROS and TNF-α and by influencing the photophosphorylation of key proteins (such as AKT and GSK3α/β) in the insulin resistance-related signaling pathways.
Collapse
|