1
|
Bailly C. Pharmacological properties of extracts and prenylated isoflavonoids from the fruits of Osage orange (Maclura pomifera (Raf.) C.K.Schneid.). Fitoterapia 2024; 177:106112. [PMID: 38971332 DOI: 10.1016/j.fitote.2024.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Osage orange trees (Maclura pomifera (Raf.) C.K.Schneid.) are distributed worldwide, particularly in south-east states of the USA. They produce large quantities of strong yellow fruits, bigger than oranges, but these fruits are inedible, with an acid milky juice which is little consumed by birds and insects. Extracts prepared from Osage orange fruits (hedge apple) have revealed a range of pharmacological properties of interest in human and veterinary medicine. In addition, Osage orange extracts can be used in agriculture and aquaculture, and as dyeing agent for the textile industry. Extracts contain potent antioxidant compounds, notably the isoflavonoids pomiferin and auriculasin, together with other terpenoids and flavonoids. The structural characteristics and pharmacological properties of the major prenylated isoflavones isolated from M. pomifera are discussed here, with a focus on the two phenolic compounds osajin and warangalone, and the two catechol analogues pomiferin and auriculasin. The mechanisms at the origin of their potent antioxidant and anti-inflammatory effects are presented, notably inhibition of xanthine oxidase, phosphodiesterase 5A and kinases such as RKS2 and kRAS. Osajin and auriculasin display marked anticancer properties, owing to their ability to inhibit tumor cell proliferation, migration and tumor angiogenesis. Different molecular mechanisms are discussed, including osajin‑copper complexation and binding to quadruplex DNA. An overview of the mechanism of action of the prenylated isoflavones from Osage orange is presented, with the objective to promote their knowledge and to raise opportunities to better exploit the fruits of Osage orange, abundant but largely neglected at present.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
2
|
Guang D, Xiaofei Z, Yu M, Hui N, Min S, Xiaonan S. Pomiferin targeting SLC9A9 based on histone acetylation modification pattern is a potential therapeutical option for gastric cancer with high malignancy. Biochem Pharmacol 2024; 226:116333. [PMID: 38824966 DOI: 10.1016/j.bcp.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Changes in histone acetylation status are associated with gastric cancer (GC) progression. Pomiferin is a natural flavonoid, however, the specific role of pomiferin in the treatment of GC is still unclear, and its targets are not well clarified. In this work, the prognostic genes related with histone acetylation in GC were screened by univariate Cox analysis. Next, a risk model of was constructed using least absolute shrinkage and selection operator-Cox regression analyses, and multivariate Cox analysis was used for identifying the independent risk factor. Molecular docking was performed using AutoDock Vina to validate the interaction between solute carrier family 9 member A9 (SLC9A9) and pomiferin. In vitro and in vivo models were applied to investigate the tumor-suppressive role of pomiferin against GC. The inhibitory effects of pomiferin on EGFR/PI3K/AKT signaling were valdiated by Western blotting, immunofluorescence staining and qPCR. Here, a prognostic risk model based on histone acetylation regulators was established, and SLC9A9 was identified as a risk factor associated with histone acetylation status in GC. SLC9A9 expression was associated with abnormal immune microenvironment of tumor. Pomiferin had a high binding affinity with SLC9A9, and both pomiferin treatment and depletion of SLC9A9 repressed the malignant phenotypes of GC cells. Mechanistically, pomiferin inactivates EGFR/PI3K/AKT signaling in GC cells. In summary, SLC9A9, as a indicator of abnormal histone acetylation status of GC, functions as an oncogenic factor. Pomiferin binds with SLC9A9 to inactivate EGFR/PI3K/AKT pathway, to block GC progression, suggesting it is a promising drug for the patients with highly malignant GC.
Collapse
Affiliation(s)
- Deng Guang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhang Xiaofei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Meng Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Niu Hui
- Department of Respiratory, Zhoukou City Central Hospital, Zhoukou 466000, Henan, China
| | - Song Min
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Shi Xiaonan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
3
|
Harahap U, Syahputra RA, Ahmed A, Nasution A, Wisely W, Sirait ML, Dalimunthe A, Zainalabidin S, Taslim NA, Nurkolis F, Kim B. Current insights and future perspectives of flavonoids: A promising antihypertensive approach. Phytother Res 2024; 38:3146-3168. [PMID: 38616386 DOI: 10.1002/ptr.8199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Hypertension, or high blood pressure (BP), is a complex disease influenced by various risk factors. It is characterized by persistent elevation of BP levels, typically exceeding 140/90 mmHg. Endothelial dysfunction and reduced nitric oxide (NO) bioavailability play crucial roles in hypertension development. L-NG-nitro arginine methyl ester (L-NAME), an analog of L-arginine, inhibits endothelial NO synthase (eNOS) enzymes, leading to decreased NO production and increased BP. Animal models exposed to L-NAME manifest hypertension, making it a useful design for studying the hypertension condition. Natural products have gained interest as alternative approaches for managing hypertension. Flavonoids, abundant in fruits, vegetables, and other plant sources, have potential cardiovascular benefits, including antihypertensive effects. Flavonoids have been extensively studied in cell cultures, animal models, and, to lesser extent, in human trials to evaluate their effectiveness against L-NAME-induced hypertension. This comprehensive review summarizes the antihypertensive activity of specific flavonoids, including quercetin, luteolin, rutin, troxerutin, apigenin, and chrysin, in L-NAME-induced hypertension models. Flavonoids possess antioxidant properties that mitigate oxidative stress, a major contributor to endothelial dysfunction and hypertension. They enhance endothelial function by promoting NO bioavailability, vasodilation, and the preservation of vascular homeostasis. Flavonoids also modulate vasoactive factors involved in BP regulation, such as angiotensin-converting enzyme (ACE) and endothelin-1. Moreover, they exhibit anti-inflammatory effects, attenuating inflammation-mediated hypertension. This review provides compelling evidence for the antihypertensive potential of flavonoids against L-NAME-induced hypertension. Their multifaceted mechanisms of action suggest their ability to target multiple pathways involved in hypertension development. Nonetheless, the reviewed studies contribute to the evidence supporting the useful of flavonoids for hypertension prevention and treatment. In conclusion, flavonoids represent a promising class of natural compounds for combating hypertension. This comprehensive review serves as a valuable resource summarizing the current knowledge on the antihypertensive effects of specific flavonoids, facilitating further investigation and guiding the development of novel therapeutic strategies for hypertension management.
Collapse
Affiliation(s)
- Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Azhari Nasution
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Wenny Wisely
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Maureen Lazurit Sirait
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Landucci E, Ribaudo G, Anyanwu M, Oselladore E, Giannangeli M, Mazzantini C, Lana D, Giovannini MG, Memo M, Pellegrini-Giampietro DE, Gianoncelli A. Virtual Screening-Accelerated Discovery of a Phosphodiesterase 9 Inhibitor with Neuroprotective Effects in the Kainate Toxicity In Vitro Model. ACS Chem Neurosci 2023; 14:3826-3838. [PMID: 37726213 PMCID: PMC10587872 DOI: 10.1021/acschemneuro.3c00431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
In the central nervous system, some specific phosphodiesterase (PDE) isoforms modulate pathways involved in neuronal plasticity. Accumulating evidence suggests that PDE9 may be a promising therapeutic target for neurodegenerative diseases. In the current study, computational techniques were used to identify a nature-inspired PDE9 inhibitor bearing the scaffold of an isoflavone, starting from a database of synthetic small molecules using a ligand-based approach. Furthermore, docking studies supported by molecular dynamics investigations allowed us to evaluate the features of the ligand-target complex. In vitro assays confirmed the computational results, showing that the selected compound inhibits the enzyme in the nanomolar range. Additionally, we evaluated the expression of gene and protein levels of PDE9 in organotypic hippocampal slices, observing an increase following exposure to kainate (KA). Importantly, the PDE9 inhibitor reduced CA3 damage induced by KA in a dose-dependent manner in organotypic hippocampal slices. Taken together, these observations strongly support the potential of the identified nature-inspired PDE9 inhibitor and suggest that such a molecule could represent a promising lead compound to develop novel therapeutic tools against neurological diseases..
Collapse
Affiliation(s)
- Elisa Landucci
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Giovanni Ribaudo
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Margrate Anyanwu
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Erika Oselladore
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Matteo Giannangeli
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Costanza Mazzantini
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Daniele Lana
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Maria Grazia Giovannini
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Maurizio Memo
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | | | - Alessandra Gianoncelli
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
5
|
Qu YQ, Song LL, Xu SW, Yu MSY, Kadioglu O, Michelangeli F, Law BYK, Efferth T, Lam CWK, Wong VKW. Pomiferin targets SERCA, mTOR, and P-gp to induce autophagic cell death in apoptosis-resistant cancer cells, and reverses the MDR phenotype in cisplatin-resistant tumors in vivo. Pharmacol Res 2023; 191:106769. [PMID: 37061145 DOI: 10.1016/j.phrs.2023.106769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Drug resistance in cancer has been classified as innate resistance or acquired resistance, which were characterized by apoptotic defects and ABC transporters overexpression respectively. Therefore, to preclude or reverse these resistance mechanisms could be a promising strategy to improve chemotherapeutic outcomes. In this study, a natural product from Osage Orange, pomiferin, was identified as a novel autophagy activator that circumvents innate resistance by triggering autophagic cell death via SERCA inhibition and activation of the CaMKKβ-AMPK-mTOR signaling cascade. In addition, pomiferin also directly inhibited the P-gp (MDR1/ABCB1) efflux and reversed acquired resistance by potentiating the accumulation and efficacy of the chemotherapeutic agent, cisplatin. In vivo study demonstrated that pomiferin triggered calcium-mediated tumor suppression and exhibited an anti-metastatic effect in the LLC-1 lung cancer-bearing mouse model. Moreover, as an adjuvant, pomiferin potentiated the anti-tumor effect of the chemotherapeutic agent, cisplatin, in RM-1 drug-resistant prostate cancer-bearing mouse model by specially attenuating ABCB1-mediated drug efflux, but not ABCC5, thereby promoting the accumulation of cisplatin in tumors. Collectively, pomiferin may serve as a novel effective agent for circumventing drug resistance in clinical applications.
Collapse
Affiliation(s)
- Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Lin-Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Su-Wei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Basic Medicine of Zhuhai Health School, Zhuhai, China
| | - Margaret Sum Yee Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | | | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | | | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
6
|
Orhan IE, Rauf A, Saleem M, Khalil AA. Natural Molecules as Talented Inhibitors of Nucleotide Pyrophosphatases/ Phosphodiesterases (PDEs). Curr Top Med Chem 2022; 22:209-228. [PMID: 34503407 DOI: 10.2174/1568026621666210909164118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phosphodiesterases (PDEs) are a wide group of enzymes with multiple therapeutic actions, including vasorelaxation, cardiotonic, antidepressant, anti-inflammatory, antithrombotic, anti-spasmolytic, memory-enhancing, and anti-asthmatic. PDEs with eleven subtypes from PDE-1 to PDE-11 typically catalyze the cleavage of the phosphodiester bond and, hence, degrades either cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP). OBJECTIVE Several selective or non-selective inhibitors of the PDE subtypes are used clinically, i.e. sildenafil, rolipram, cysteine, etc. Recently, interest in plant-based pharmacologically bioactive compounds having potent PDEs inhibitory potential has increased. Purposely, extensive research has been carried out on natural products to explore new inhibitors of various PDEs. Therefore, this review summarizes the published data on natural PDEs inhibitors and their potential therapeutic applications. METHODS For this purpose, natural compounds with PDE inhibitory potential have been surveyed through several databases, including PubMed, Web of Sciences (WoS), Scopus, and Google Scholar. RESULTS According to a detailed literature survey, the most promising class of herbal compounds with PDE-inhibiting property has been found to belong to phenolics, including flavonoids (luteolin, kaempferol, icariin, etc.). Many other encouraging inhibitors from plants have also been identified, such as coumarins (23, 24) (licoarylcoumarin and glycocoumarin,), saponins (agapanthussaponins), lignans (31, 33) [(±)-schizandrin and kobusin], terpenes (28, 29, 31) (perianradulcin A, quinovic acid, and ursolic acid), anthraquinones (18, 19) (emodin and chrysophanol), and alkaloids (Sanjoinine-D) (36). CONCLUSION In this review, studies have revealed the PDE-inhibitory potential of natural plant extracts and their bioactive constituents in treating various diseases; however, further clinical studies comprising synergistic use of different therapies (synthetic & natural) to acquire multi-targeted results might also be a promising option.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 25120, KPK, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Ghazi University, Dera Ghazi Khan-32200, Punjab, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
7
|
Multi-target Natural and Nature-Inspired Compounds against Neurodegeneration: A Focus on Dual Cholinesterase and Phosphodiesterase Inhibitors. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease is a memory-related neurodegenerative condition leading to cognitive impairment. Cholinergic deficit, together with other underlying mechanisms, leads the to onset and progression of the disease. Consequently, acetylcholinesterase inhibitors are used for the symptomatic treatment of dementia, even if limited efficacy is observed. More recently, some specific phosphodiesterase isoforms emerged as promising, alternative targets for developing inhibitors to contrast neurodegeneration. Phosphodiesterase isoforms 4, 5 and 9 were found to be expressed in brain regions that are relevant for cognition. Given the complex nature of Alzheimer’s disease and the combination of involved biochemical mechanisms, the development of polypharmacological agents acting on more than one pathway is desirable. This review provides an overview of recent reports focused on natural and Nature-inspired small molecules, or plant extracts, acting as dual cholinesterase and phosphodiesterase inhibitors. In the context of the multi-target directed ligand approach, such molecules would pave the way for the development of novel agents against neurodegeneration. More precisely, according to the literature data, xanthines, other alkaloids, flavonoids, coumarins and polyphenolic acids represent promising scaffolds for future optimization.
Collapse
|
8
|
Ribaudo G, Memo M, Gianoncelli A. A Perspective on Natural and Nature-Inspired Small Molecules Targeting Phosphodiesterase 9 (PDE9): Chances and Challenges against Neurodegeneration. Pharmaceuticals (Basel) 2021; 14:ph14010058. [PMID: 33451065 PMCID: PMC7828511 DOI: 10.3390/ph14010058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022] Open
Abstract
As life expectancy increases, dementia affects a growing number of people worldwide. Besides current treatments, phosphodiesterase 9 (PDE9) represents an alternative target for developing innovative small molecules to contrast neurodegeneration. PDE inhibition promotes neurotransmitter release, amelioration of microvascular dysfunction, and neuronal plasticity. This review will provide an update on natural and nature-inspired PDE9 inhibitors, with a focus on the structural features of PDE9 that encourage the development of isoform-selective ligands. The expression in the brain, the presence within its structure of a peculiar accessory pocket, the asymmetry between the two subunits composing the protein dimer, and the selectivity towards chiral species make PDE9 a suitable target to develop specific inhibitors. Additionally, the world of natural compounds is an ideal source for identifying novel, possibly asymmetric, scaffolds, and xanthines, flavonoids, neolignans, and their derivatives are currently being studied. In this review, the available literature data were interpreted and clarified, from a structural point of view, taking advantage of molecular modeling: 3D structures of ligand-target complexes were retrieved, or built, and discussed.
Collapse
|
9
|
Filip S, Đurović S, Blagojević S, Tomić A, Ranitović A, Gašić U, Tešić Ž, Zeković Z. Chemical composition and antimicrobial activity of Osage orange (Maclura pomifera) leaf extracts. Arch Pharm (Weinheim) 2020; 354:e2000195. [PMID: 33049077 DOI: 10.1002/ardp.202000195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022]
Abstract
The main goal of this study was to establish the chemical profile of Osage orange (Maclura pomifera) leaf extracts, obtained by conventional maceration technique, and to examine its antimicrobial activity. The identification and quantification of the extract compounds were done using ultra-high-performance liquid chromatography, with a diode array detector coupled with triple-quadrupole mass spectrometer and gas chromatography-mass spectrometry techniques. Thirty-one polyphenolic compounds were detected and identified in the ethanolic extracts, whereby 5-O-caffeoylquinic acid was found to be the dominant compound. Among other compounds, pentacosane and palmitic acid were the most abundant compounds in the dichloromethane extract. The preliminary antimicrobial activity screening shows that Gram-positive bacteria tend to be more sensitive to the investigated extracts. The highest antimicrobial activity was determined against Enterococcus faecalis ATCC 19433 and Listeria monocytogenes ATCC 35152. From these results, Osage orange leaves can be considered as plant material with significant antimicrobial properties.
Collapse
Affiliation(s)
- Snežana Filip
- Technical Faculty "Mihajlo Pupin" Zrenjanin, University of Novi Sad, Zrenjanin, Serbia
| | - Saša Đurović
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | | | - Ana Tomić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | | | - Uroš Gašić
- Department of Plant Physiology, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
10
|
Abstract
On the basis of the knowledge from traditional herbal and folk medicine, flavonoids are among the most studied chemical classes of natural compounds for their potential activity as phosphodiesterase 5 (PDE5) inhibitors. We here describe the preparation of a semi-synthetic hydrazone derivative of quercetin, 2-(3,4-dihydroxyphenyl)-4-(2-(4-nitrophenyl)hydrazono)-4H-chromene-3,5,7-triol, that was obtained via a single-step modification of the natural compound. The product was characterized by NMR, mass spectrometry and HPLC. Preliminary molecular modeling studies suggest that this compound could efficiently interact with PDE5.
Collapse
|
11
|
Ribaudo G, Ongaro A, Zagotto G, Memo M, Gianoncelli A. Therapeutic Potential of Phosphodiesterase Inhibitors against Neurodegeneration: The Perspective of the Medicinal Chemist. ACS Chem Neurosci 2020; 11:1726-1739. [PMID: 32401481 PMCID: PMC8007108 DOI: 10.1021/acschemneuro.0c00244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Increasing human
life expectancy prompts the development of novel
remedies for cognitive decline: 44 million people worldwide are affected
by dementia, and this number is predicted to triple by 2050. Acetylcholinesterase
and N-methyl-d-aspartate receptors represent
the targets of currently available drugs for Alzheimer’s disease,
which are characterized by limited efficacy. Thus, the search for
therapeutic agents with alternative or combined mechanisms of action
is wide open. Since variations in 3′,5′-cyclic adenosine
monophosphate, 3′,5′-cyclic guanosine monophosphate,
and/or nitric oxide levels interfere with downstream pathways involved
in memory processes, evidence supporting the potential of phosphodiesterase
(PDE) inhibitors in contrasting neurodegeneration should be
critically considered. For the preparation of this Review, more than
140 scientific papers were retrieved by searching PubMed and Scopus
databases. A systematic approach was adopted when overviewing the
different PDE isoforms, taking into account details on brain localization,
downstream molecular mechanisms, and inhibitors currently under study,
according to available in vitro and in vivo data. In the context of drug repurposing, a section focusing on
PDE5 was introduced. Original computational studies were performed
to rationalize the emerging evidence that suggests the role of PDE5
inhibitors as multi-target agents against neurodegeneration.
Moreover, since such compounds must cross the blood–brain barrier
and reach inhibitory concentrations in the central nervous system
to exert their therapeutic activity, physicochemical parameters
were analyzed and discussed. Taken together, literature and computational
data suggest that some PDE5 inhibitors, such as tadalafil, represent
promising candidates.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
12
|
Ribaudo G, Ongaro A, Zagotto G, Memo M, Gianoncelli A. Photoactivated semi-synthetic derivative of osajin selectively interacts with G-quadruplex DNA. Nat Prod Res 2020; 36:405-410. [PMID: 32419493 DOI: 10.1080/14786419.2020.1768087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Li X, Liao J, Jiang Z, Liu X, Chen S, He X, Zhu L, Duan X, Xu Z, Qi B, Guo X, Tong R, Shi J. A concise review of recent advances in anti-heart failure targets and its small molecules inhibitors in recent years. Eur J Med Chem 2020; 186:111852. [PMID: 31759729 DOI: 10.1016/j.ejmech.2019.111852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Heart failure is a disease with high mortality and the risk of heart failure increases in magnitude with age. The patients of heart failure is increasing year by year. Hence, Pharmaceutical researchers have to develop new drugs with better pharmacological effects to coping with this phenomenon. In this article, we reviewed the small molecule compounds for heart failure that have been marketed in recent years or are promising to enter clinical research. We also reviewed the SAR (structure activity relationship) of these molecules, such as renin inhibitors, ROMK inhibitors, a kind of new diuretics, and some dual-targets inhibitors. These small molecules proven to be beneficial effect on heart failure patients. Which may provide ideas for the design of novel anti-heart failure therapeutic drugs.
Collapse
Affiliation(s)
- Xingxing Li
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Jing Liao
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Pediatric Department Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, People's Republic of China, Chengdu, 610072, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xinyu Liu
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Shan Chen
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Xia He
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Individual Key Laboratory, Chengdu, People's Republic of China, Chengdu, 610072, China
| | - Ling Zhu
- Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Xingmei Duan
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Individual Key Laboratory, Chengdu, People's Republic of China, Chengdu, 610072, China
| | - Zhuyu Xu
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaoqiang Guo
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Rongsheng Tong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Individual Key Laboratory, Chengdu, People's Republic of China, Chengdu, 610072, China.
| | - Jianyou Shi
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Individual Key Laboratory, Chengdu, People's Republic of China, Chengdu, 610072, China.
| |
Collapse
|
14
|
Oselladore E, Ongaro A, Zagotto G, Memo M, Ribaudo G, Gianoncelli A. Combinatorial library generation, molecular docking and molecular dynamics simulations for enhancing the isoflavone scaffold in phosphodiesterase inhibition. NEW J CHEM 2020. [DOI: 10.1039/d0nj02537b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoflavones are listed among the most widely studied natural compounds in light of their several biological properties, one of which consists in their ability to inhibit phosphodiesterases (PDEs).
Collapse
Affiliation(s)
- Erika Oselladore
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine
- University of Brescia
- 25123 Brescia
- Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine
- University of Brescia
- 25123 Brescia
- Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine
- University of Brescia
- 25123 Brescia
- Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine
- University of Brescia
- 25123 Brescia
- Italy
| |
Collapse
|
15
|
Pourová J, Applová L, Macáková K, Vopršalová M, Migkos T, Bentanachs R, Biedermann D, Petrásková L, Tvrdý V, Hrubša M, Karlíčková J, Křen V, Valentová K, Mladěnka P. The Effect of Silymarin Flavonolignans and Their Sulfated Conjugates on Platelet Aggregation and Blood Vessels Ex Vivo. Nutrients 2019; 11:nu11102286. [PMID: 31554252 PMCID: PMC6836034 DOI: 10.3390/nu11102286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Silymarin is a traditional drug and food supplement employed for numerous liver disorders. The available studies indicate that its activities may be broader, in particular due to claimed benefits in some cardiovascular diseases, but the contributions of individual silymarin components are unclear. Therefore, we tested silymarin flavonolignans as pure diastereomers as well as their sulfated metabolites for potential vasorelaxant and antiplatelet effects in isolated rat aorta and in human blood, respectively. Eleven compounds from a panel of 17 tested exhibited a vasorelaxant effect, with half maximal effective concentrations (EC50) ranging from 20 to 100 µM, and some substances retained certain activity even in the range of hundreds of nM. Stereomers A were generally more potent as vasorelaxants than stereomers B. Interestingly, the most active compound was a metabolite—silychristin-19-O-sulfate. Although initial experiments showed that silybin, 2,3-dehydrosilybin, and 2,3-dehydrosilychristin were able to substantially block platelet aggregation, their effects were rapidly abolished with decreasing concentration, and were negligible at concentrations ≤100 µM. In conclusion, metabolites of silymarin flavonolignans seem to have biologically relevant vasodilatory properties, but the effect of silymarin components on platelets is low or negligible.
Collapse
Affiliation(s)
- Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Kateřina Macáková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Thomas Migkos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Roger Bentanachs
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXII 27-31, 08028 Barcelona, Spain.
| | - David Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jana Karlíčková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
16
|
Ongaro A, Zagotto G, Memo M, Gianoncelli A, Ribaudo G. Natural phosphodiesterase 5 (PDE5) inhibitors: a computational approach. Nat Prod Res 2019; 35:1648-1653. [PMID: 31140295 DOI: 10.1080/14786419.2019.1619726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In 1998, sildenafil was marketed as the first FDA-approved oral drug for the treatment of erectile dysfunction (ED). During the last two decades, the commercialization of other synthetic phosphodiesterase 5 (PDE5) inhibitors has been paralleled by the rise of remedies based on natural molecules from different chemical classes (flavonoids, polyphenols and alkaloids in general). In this work, a set of in silico tools were applied to study a panel of 30 natural compounds claimed to be effective against ED in the scientific literature or in folk medicine. First, pharmacokinetic properties were analysed to exclude the compounds lacking in specific drug-like features. Estimated binding energy for PDE5 and selectivity towards other PDE isoforms were then considered to highlight some promising molecules. Finally, a detailed structural investigation of the interaction pattern with PDE in comparison with sildenafil was conducted for the best performing compound of the set.
Collapse
Affiliation(s)
- Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Ribaudo G, Coghi P, Zanforlin E, Law BYK, Wu YYJ, Han Y, Qiu AC, Qu YQ, Zagotto G, Wong VKW. Semi-synthetic isoflavones as BACE-1 inhibitors against Alzheimer's disease. Bioorg Chem 2019; 87:474-483. [PMID: 30927588 DOI: 10.1016/j.bioorg.2019.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
BACE-1 is considered to be one of the targets for prevention and treatment of Alzheimer's disease (AD). We here report a novel class of semi-synthetic derivatives of prenylated isoflavones, obtained from the derivatization of natural flavonoids from Maclura pomifera. In vitro anti-AD effect of the synthesized compounds were evaluated via human recombinant BACE-1 inhibition assay. Compound 7, 8 and 13 were found to be the most active candidates which demonstrates good correlation between the computational docking and pharmacokinetic predictions. Moreover, cytotoxic studies demonstrated that the compounds are not toxic against normal and cancer cell lines. Among these three compounds, compound 7 enhance the activity of P-glycoprotein (P-gp) on A549 cancer cells and increases the activity of P-gp ATPase with a possible role on the efflux of amyloid-β across the blood- brain barrier. In conclusion, the present findings may pave the way for the discovery of a novel class of compounds to prevent and/or treat AD.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Paolo Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Enrico Zanforlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Yuki Yu Jun Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Alena Congling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
18
|
5-Hydroxy-3-(4-hydroxyphenyl)-8,8-dimethyl-6-(3-methylbut-2-enyl)pyrano[2,3-h]chromen-4-one. MOLBANK 2018. [DOI: 10.3390/m1004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Ribaudo G, Vendrame T, Bova S. Isoflavones from Maclura pomifera: structural elucidation and in silico evaluation of their interaction with PDE5. Nat Prod Res 2016; 31:1988-1994. [DOI: 10.1080/14786419.2016.1269101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|