1
|
Wang X, Zhou L, Liu Y, Ban F, Yang Z, Zhang Y, Hu X, Zhang Y. Screening for Anti-Aβ Aggregation Activity of Marine Fungal Natural Products Based on a Gold Nanoparticle Method. Chem Biodivers 2025; 22:e202401809. [PMID: 39600230 DOI: 10.1002/cbdv.202401809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Screening Aβ aggregation inhibitors (AAIs) is important for Alzheimer's disease drug discovery. However, common cellular or biochemical methods are not suitable for high-throughput natural product screening. A gold nanoparticle (GNP) screening method was employed in this study to screen marine fungal crude extracts and pure compounds for quick AAI discovering. The anti-Aβ aggregation activity was further inspected using transmission electron microscopic (TEM) observation, and the interaction between active molecules and different Aβ species was revealed by molecular docking. The results indicated that the fungal extracts DLS2008001(M), BM3T2(M), DLEN2008005(M), TBG1-16(P), and TBG1-13(P) showed activity comparable to the positive control human serum albumin at the concentration of 500 µg/mL; 10 pure compounds also displayed moderate anti-aggregation activity, particularly nidulin, aspergillusidone G, and butyrolactone I. The inspection of anti-Aβ aggregation effect through TEM further demonstrated that extracts TBG1-16(P), DLS2008001(M), and BM3T2(M) dramatically inhibited the formation of Aβ aggregates. Molecular docking displayed low binding energies and key interactions of nidulin, aspergillusidone G, and butyrolactone I, with nine types of Aβ peptides. These findings indicate that the GNP method is efficient in screening AAIs and reveal marine fungal natural products as valuable sources of small molecular AAIs.
Collapse
Affiliation(s)
- Xingyuan Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Marine Biomedicine R&D Center at Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Marine Biomedicine R&D Center at Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yayue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Marine Biomedicine R&D Center at Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Fangfang Ban
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Marine Biomedicine R&D Center at Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, China
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Marine Biomedicine R&D Center at Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, China
| | - Yongping Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Marine Biomedicine R&D Center at Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, China
| | - Xueqiong Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Marine Biomedicine R&D Center at Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Marine Biomedicine R&D Center at Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Li HT, Guo XY, Shao YT, Huang WY, Miao CP, Li W. Triterpenoid and trichothecenes from a rhizospheric soil-derived Paramyrothecium sp. KMU22107. Nat Prod Res 2024:1-10. [PMID: 39056194 DOI: 10.1080/14786419.2024.2383994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
A new phthalide derivative named paramlyktone (1) and a new arborinane-type triterpenoid named paramyrpenoid (2), together with ten previously described trichothecenes derivatives (3-12) were isolated and identified from a rhizospheric soil-derived Paramyrothecium sp. KMU22107 associated with Delphinium yunnanense. Their structural elucidation was achieved by the comprehensive analysis of spectroscopic data and comparison with literature values. Notably, paramyrpenoid (2) was the first example of an arborinane-type triterpenoid with a double bond at Δ12(13) and an additional methyl motif at C-8. This was the first report of arborinane-type triterpenoids from a fungus belonging to Paramyrothecium genus. In pharmacological studies, paramyrpenoid (2) demonstrated significant cytotoxic activity against the HL-60, SW480, A-549, MDA-MB-231 and SMMC-7721 cell lines, with IC50 values from 2.0 to 16.1 μM. Compounds 1 and 2 were also evaluated for anti-inflammatory, anti-acetylcholinesterase (AChE), and protein tyrosine phosphatase 1B (PTP1B) inhibitory activities in vitro.
Collapse
Affiliation(s)
- Hong-Tao Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xing-Yi Guo
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Ya-Ting Shao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Wen-Yu Huang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Cui-Ping Miao
- Yunnan Institute of Microbiology, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Wei Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Jiang Y, Wang J, Zhang H, Tian X, Liang Z, Xu X, Bao J, Chen B. Biological Activity and Sterilization Mechanism of Marine Fungi-derived Aromatic Butenolide Asperbutenolide A Against Staphylococcus aureus. Chem Biodivers 2024; 21:e202301826. [PMID: 38155523 DOI: 10.1002/cbdv.202301826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Marine fungi represent a huge untapped resource of natural products. The bio-activity of a new asperbutenolide A from marine fungus Aspergillus terreus was not well known. In the present study, the minimum inhibitory concentration (MIC) and RNA-Sequencing were used to analyze the bio-activity and sterilization mechanism of asperbutenolide A against clinical pathogenic microbes. The results showed that the MICs of asperbutenolide A against methicillin-resistant Staphylococcus aureus (MRSA) were 4.0-8.0 μg/mL. The asperbutenolide A present poor bio-activity against with candida. The sterilization mechanism of asperbutenolide A against MRSA showed that there were 1426 differentially-expressed genes (DEGs) between the groups of MRSA treated with asperbutenolide A and negative control. Gene Ontology (GO) classification analysis indicated that the DEGs were mainly involved in cellular process, metabolic process, cellular anatomical entity, binding, catalytic activity, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) classification analysis showed that these DEGs were mainly enriched in amino acid metabolism, carbohydrate metabolism, membrane transport, etc. Moreover, qRT-PCR showed similar trends in the expressions of argF, ureA, glmS and opuCA with the RNA-Sequencing. These results indicated that asperbutenolide A was with ideal bio-activity against with MRSA and could be as a new antibacterial agent.
Collapse
Affiliation(s)
- Yufeng Jiang
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, China
- Medical Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining high-throughput gene sequencing, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining Prenatal Monitoring and Genetic Disease Research, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Jiule Wang
- Central Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Jining Key Laboratory for the Intelligent Diagnosis of Emerging Infectious Diseases, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xuelu Tian
- Department of Laboratory, Jining Dermatosis Prevention and Treatment Hospital, Jining, Shandong, China
| | - Zhiqiang Liang
- Medical Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining high-throughput gene sequencing, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining Prenatal Monitoring and Genetic Disease Research, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Xinli Xu
- Medical Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining high-throughput gene sequencing, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining Prenatal Monitoring and Genetic Disease Research, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Biao Chen
- Central Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Jining Key Laboratory for the Intelligent Diagnosis of Emerging Infectious Diseases, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
4
|
Parveen S, Maurya N, Meena A, Luqman S. Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids. Curr Top Med Chem 2024; 24:343-363. [PMID: 38031797 DOI: 10.2174/0115680266270796231109171808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Cinchonine is one of the Cinchona alkaloids that is commercially extracted from the Peruvian bark of Cinchona officinalis L. (Family: Rubiaceae). It is also obtained in much lower quantities from other species of Cinchona, such as Cinchona calisaya, Cinchona succirubra, and Cinchona pubescens, and in some other plants, such as Remijia peruviana. Cinchonine has been historically used as an anti-malarial agent. It also has a wide range of other biological properties, including anti-cancer, anti-obesity, anti-inflammatory, anti-parasitic, antimicrobial, anti-platelet aggregation, and anti-osteoclast differentiation. AIM AND OBJECTIVE This review discusses the pharmacological activity of cinchonine under different experimental conditions, including in silico, in vitro, and in vivo. It also covers the compound's physicochemical properties, toxicological aspects, and pharmacokinetics. METHODOLOGY A comprehensive literature search was conducted on multiple online databases, such as PubMed, Scopus, and Google Scholar. The aim was to retrieve a wide range of review/research papers and bibliographic sources. The process involved applying exclusion and inclusion criteria to ensure the selection of relevant and high-quality papers. RESULTS Cinchonine has numerous pharmacological properties, making it a promising compound for various therapeutic applications. It induces anti-cancer activity by activating caspase-3 and PARP-1, and triggers the endoplasmic reticulum stress response. It up-regulates GRP78 and promotes the phosphorylation of PERK and ETIF-2α. Cinchonine also inhibits osteoclastogenesis, inhibiting TAK1 activation and suppressing NFATc1 expression by regulating AP-1 and NF-κB. Its potential anti-inflammatory effects reduce the impact of high-fat diets, making it suitable for targeting obesity-related diseases. However, research on cinchonine is limited, and further studies are needed to fully understand its therapeutic potential. Further investigation is needed to ensure its safety and efficacy in clinical applications. CONCLUSION Overall, this review article explains the pharmacological activity of cinchonine, its synthesis, and physicochemical properties, toxicological aspects, and pharmacokinetics.
Collapse
Affiliation(s)
- Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Nidhi Maurya
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Lu T, Liu Y, Zhou L, Liao Q, Nie Y, Wang X, Lei X, Hong P, Feng Y, Hu X, Zhang Y. The screening for marine fungal strains with high potential in alkaloids production by in situ colony assay and LC-MS/MS based secondary metabolic profiling. Front Microbiol 2023; 14:1144328. [PMID: 37206330 PMCID: PMC10191116 DOI: 10.3389/fmicb.2023.1144328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Background Alkaloids are the second primary class of secondary metabolites (SMs) from marine organisms, most of which have antioxidant, antitumor, antibacterial, anti-inflammatory, and other activities. However, the SMs obtained by traditional isolation strategies have drawbacks such as highly reduplication and weak bioactivity. Therefore, it is significantly important to establish an efficient strategy for screening strains and mining novel compounds. Methods In this study, we utilized in situ colony assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the strain with high potential in alkaloids production. The strain was identified by genetic marker genes and morphological analysis. The secondary metabolites from the strain were isolated by the combine use of vacuum liquid chromatography (VLC), ODS column chromatography, and Sephadex LH-20. Their structures were elucidated by 1D/2D NMR, HR-ESI-MS, and other spectroscopic technologies. Finally, these compounds bioactivity were assay, including anti-inflammatory and anti-β aggregation. Results Eighteen marine fungi were preliminarily screened for alkaloids production by in situ colony assay using Dragendorff reagent as dye, and nine of them turned orange, which indicated abundant alkaloids. By thin-layer chromatography (TLC), LC-MS/MS, and multiple approaches assisted Feature-Based Molecular Networking (FBMN) analysis of fermentation extracts, a strain ACD-5 (Penicillium mallochii with GenBank accession number OM368350) from sea cucumber gut was selected for its diverse alkaloids profiles especially azaphilones. In bioassays, the crude extracts of ACD-5 in Czapek-dox broth and brown rice medium showed moderate antioxidant, acetylcholinesterase inhibitory, anti-neuroinflammatory, and anti-β aggregation activities. Three chlorinated azaphilone alkaloids, compounds 1-3 (sclerotioramine, isochromophilone VI, and isochromophilone IX, respectively), were isolated from the fermentation products of ACD-5 in brown rice medium guided by bioactivities and mass spectrometry analysis. Compound 1 had shown remarkable anti-neuroinflammatory activity in liposaccharide induced BV-2 cells. Conclusion In summary, in situ colony screening together with LC-MS/MS, multi-approach assisted FBMN can act as an efficient screening method for strains with potential in alkaloids production.
Collapse
Affiliation(s)
- Tiantian Lu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yayue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingnan Liao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yingying Nie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xingyuan Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoling Lei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Pengzhi Hong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yan Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xueqiong Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yi Zhang, ,
| |
Collapse
|