1
|
Fan X, Guo J, Feng D, Li D, Hua H. Chromones and biflavonoids from Garcinia pedunculata and Garcinia nujiangensis and their anti-inflammatory activity. PHYTOCHEMISTRY 2024; 224:114166. [PMID: 38810815 DOI: 10.1016/j.phytochem.2024.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Plants of the Garcinia genus were rich in structurally diverse and naturally bioactive components, while limited studies have been reported for Garcinia pedunculata Roxb. and G. nujiangensis C. Y. Wu & Y. H. Li. Four previously undescribed compounds including three chromones, garpedunchromones A-C (1-3), and one biflavonoid, nujiangbiflavone A (14), along with fifteen known analogs (4-13, 15-19) were isolated from G. pedunculata and G. nujiangensis. The structures of the isolated compounds were determined based on their HRESIMS data, extensive NMR spectroscopic analyses, and ECD calculations. The chromone derivatives were isolated from Garcinia for the first time. Compound 14 was a rare biflavonoid with C-3─C-6″ linkage. The biological evaluation of these isolates against NO production was conducted in the LPS-induced RAW 264.7 cells, resulting in the identification of a series of potent NO inhibitors, of which garpedunchromone B (2) was the most active with an IC50 value of 18.11 ± 0.96 μM. In the network pharmacology studies, the potential targets of compounds and inflammation were obtained from PharmMapper and GeneCards database. GO and KEGG enrichment analysis revealed that the overlapped targets were closely related to the major pathogenic processes linked to inflammation. Garpedunchromone B and proteins binding sites were being predicted.
Collapse
Affiliation(s)
- Xiaojie Fan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Jiaxin Guo
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dongyan Feng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
2
|
Zou D, Liu L, Liu F, Li D, Hua H. α-Glucosidase Inhibitory Components from Garcinia pedunculata Fruits. Chem Biodivers 2024; 21:e202400409. [PMID: 38459792 DOI: 10.1002/cbdv.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
From Garcinia pedunculata Roxb. fruits, two undescribed aromatic compounds including a benzofuran and a depsidone derivative, and a new natural product, together with four known compounds were isolated. Through the analysis of spectroscopic data, high resolution mass spectrum and calculated nuclear magnetic resonance, their structures were determined. The α-glucosidase inhibitory activity of the isolates was evaluated. And compound 3 exhibited a moderate inhibitory effect on α-glucosidase. The molecular docking of compound 3 was performed to elucidate the interaction with α-glucosidase.
Collapse
Affiliation(s)
- Deli Zou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fangshen Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
3
|
Liu K, Yang J, Tang Y, Li Y, Hu Z, Hao X, Yi P, Yuan C. Bioassay-guided isolation of anti-leukemic steroids from Aglaia abbreviata by inducing apoptosis. Bioorg Chem 2024; 144:107147. [PMID: 38280357 DOI: 10.1016/j.bioorg.2024.107147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The strategy of bioactivity-guided isolation is widely used to obtain active compounds as quickly as possible. Thus, the inhibitory effects on human erythroleukemia cells (HEL) were applied to guide the isolation of the anti-leukemic compounds from Aglaia abbreviata. As a result, 19 compounds (16 steroids, two phenol derivatives, and a rare C12 chain nor-sesquiterpenoid), including 13 new compounds, were isolated and identified based on spectroscopic data analysis, single-crystal X-ray diffraction data, and electronic circular dichroism (ECD) calculations. Among them, 9 steroids exhibited good selective anti-leukemic activity against HEL and K562 (human chronic myeloid leukemia cells) cells with IC50 values between 2.29 ± 0.18 μM and 19.58 ± 0.13 μM. Notably, all the active compounds had relatively lower toxicity on the normal human liver cell line (HL-7702). Furthermore, five compounds (1, 4, 8, 10, and 19) displayed good anti-inflammatory effects, with IC50 values between 7.15 ± 0.16 and 27.1 ± 0.37 μM. An α,β-unsaturated ketone or a 5,6Δ double bond was crucial for improving anti-leukemic effect from the structure-activity relationship analysis. The compound with the most potential, 14 was selected for the preliminary mechanistic study. Compound 14 can induce apoptosis and cause cell cycle arrest. The expression of the marker proteins, such as PARP and caspase 3, were notably effected by this compound, thus inducing apoptosis. In conclusion, our investigation implied that compound 14 may serve as a potential anti-leukemia agent.
Collapse
Affiliation(s)
- Keying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Yanan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Zhanxing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China.
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China.
| |
Collapse
|
4
|
Zou D, Liu F, Liu L, Xu H, Li D, Hua H. Cytotoxic xanthones from Garcinia pedunculata fruits. PHYTOCHEMISTRY 2024; 217:113898. [PMID: 37875167 DOI: 10.1016/j.phytochem.2023.113898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Eight previously undescribed and seven known xanthones were isolated from the fruits of Garcinia pedunculata Roxb. The structures were identified by a variety of spectroscopic methods as well as by comparison with the literature. The isolates showed appreciable cytotoxicity against three human tumor cell lines (HepG2, A549, and MCF-7). Pedunculaxanthone G exhibited inhibitory activities with IC50 values of 12.41, 16.51, and 15.45 μM against the cancer cell lines and induced cell apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Deli Zou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fangshen Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Lei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|