1
|
Wang JP, Liao YT, Wu SH, Chiang ER, Hsu SH, Tseng TC, Hung SC. Mesenchymal stem cells from a hypoxic culture improve nerve regeneration. J Tissue Eng Regen Med 2020; 14:1804-1814. [PMID: 32976700 DOI: 10.1002/term.3136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
Repairing the peripheral nerves following a segmental defect injury remains surgically challenging. Because of some disadvantages of nerve grafts, nerve regeneration, such as conduits combined with bone marrow-derived mesenchymal stem cells (BMSCs), may serve as an alternative. BMSCs expand under hypoxic conditions, decrease in senescence, and increase in proliferation and differentiation potential into the bone, fat, and cartilage. The purpose of this study was to investigate whether BMSCs increased the neuronal differentiation potential following expansion under hypoxic conditions. Isolated human BMSCs (hBMSCs) expand under hypoxia or normoxia, and neuronal differentiation proceeds under normoxia. in vitro tests revealed hypoxia culture enhanced the RNA and protein expression of neuronal markers. The electrophysiology of hBMSC-differentiated neuron-like cells was also enhanced by the hypoxia culturing. Our animal model indicated that the potential treatment of hypoxic rat BMSCs (rBMSCs) was better than that of normoxic rBMSCs because the conduit with the hypoxic rBMSCs injection demonstrated the highest recovery rate of gastrocnemius muscle weights. There were more toluidine blue-stained myelinated nerve fibers in the hypoxic rBMSCs group than in the normoxic group. To sum up, BMSCs cultured under hypoxia increased the potential of neuronal differentiation both in vivo and in vitro.
Collapse
Affiliation(s)
- Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Szu-Hsien Wu
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chen Tseng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Graduate Institute of New Drug Development, Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Leite Pereira C, Quelhas Teixeira G, Rita Ferreira J, D'Este M, Eglin D, Alini M, Grad S, Barbosa MA, Gonçalves RM. Stromal Cell Derived Factor-1-Mediated Migration of Mesenchymal Stem Cells Enhances Collagen Type II Expression in Intervertebral Disc. Tissue Eng Part A 2018; 24:1818-1830. [PMID: 29916307 DOI: 10.1089/ten.tea.2018.0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by an unbalanced cell catabolic/anabolic activity and cell death, resulting in the degradation of extracellular matrix components and water loss. Repopulating the IVD with new cells may help in recovering tissue homeostasis and reverting the degenerative process. In this study the regenerative potential of a hyaluronan (HA)-based chemoattractant delivery system able to recruit mesenchymal stem cells (MSCs) seeded on the cartilaginous endplate (CEP) of IVD was explored. A HA delivery system containing stromal cell derived factor-1 (SDF-1) (5 ng/μL) (HAPSDF5) was injected in the cavity of nucleotomized bovine discs. Human MSCs (1 × 106) were seeded on the opposite CEP and allowed to migrate for up to 21 days. Migration of fluorescently labelled MSCs from CEP toward the IVD was enhanced by HAPSDF5. Likewise, an increase in collagen type II was detected at earlier time points, whereas no effect on proteoglycan content within the nucleotomized IVDs was found. MSCs produced an increased concentration of pro-catabolic factors, such as interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1). Overall, this study demonstrates that HAPSDF5 increased MSC recruitment, while the higher number of recruited cells partially contributed to accelerate matrix remodeling in nucleotomized IVDs.
Collapse
Affiliation(s)
- Catarina Leite Pereira
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| | - Graciosa Quelhas Teixeira
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| | - Joana Rita Ferreira
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
- 3 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Matteo D'Este
- 4 AO Research Institute Davos, AO Foundation , Davos, Switzerland
| | - David Eglin
- 4 AO Research Institute Davos, AO Foundation , Davos, Switzerland
| | - Maulo Alini
- 4 AO Research Institute Davos, AO Foundation , Davos, Switzerland
| | - Sibylle Grad
- 4 AO Research Institute Davos, AO Foundation , Davos, Switzerland
| | - Mário Adolfo Barbosa
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
- 3 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Raquel Madeira Gonçalves
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| |
Collapse
|
3
|
Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal 2013; 2013:632972. [PMID: 24068884 PMCID: PMC3771429 DOI: 10.1155/2013/632972] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022] Open
Abstract
Cell-based regenerative therapies, based on in vitro propagation of stem cells, offer tremendous hope to many individuals suffering from degenerative diseases that were previously deemed untreatable. Due to the self-renewal capacity, multilineage potential, and immunosuppressive property, mesenchymal stem cells (MSCs) are considered as an attractive source of stem cells for regenerative therapies. However, poor growth kinetics, early senescence, and genetic instability during in vitro expansion and poor engraftment after transplantation are considered to be among the major disadvantages of MSC-based regenerative therapies. A number of complex inter- and intracellular interactive signaling systems control growth, multiplication, and differentiation of MSCs in their niche. Common laboratory conditions for stem cell culture involve ambient O2 concentration (20%) in contrast to their niche where they usually reside in 2–9% O2. Notably, O2 plays an important role in maintaining stem cell fate in terms of proliferation and differentiation, by regulating hypoxia-inducible factor-1 (HIF-1) mediated expression of different genes. This paper aims to describe and compare the role of normoxia (20% O2) and hypoxia (2–9% O2) on the biology of MSCs. Finally it is concluded that a hypoxic environment can greatly improve growth kinetics, genetic stability, and expression of chemokine receptors during in vitro expansion and eventually can increase efficiency of MSC-based regenerative therapies.
Collapse
|