1
|
Freire V, Casañas L, Laborda L, Condón S, Gayán E. Influence of Sporulation Temperature on Germination and Growth of B. weihenstephanensis Strains in Specific Nutrients and in an Extended Shelf-Life Refrigerated Matrix Under Commercial Pasteurization and Storage Conditions. Foods 2024; 13:3434. [PMID: 39517218 PMCID: PMC11545089 DOI: 10.3390/foods13213434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Extended shelf-life (ESL) refrigerated ready-to-eat foods are thermally pasteurized to ensure food safety and stability. However, surviving psychrotrophic Bacillus cereus spores can still pose a challenge. Studies predicting their behavior often overlook sporulation conditions. This study investigated the effect of sporulation temperature on germination of three Bacillus weihenstephanensis strains in specific nutrients (inosine and/or amino acids) with or without prior heat activation (80 °C, 10 min). Sporulation temperature variably affected germination, with stronger effects in moderately responsive strains and nutrients. Heat activation strongly stimulated germination, particularly in nutrients with poorer responses, mitigating differences induced by sporulation temperature. The influence of sporulation temperature on germination and growth in an ESL matrix at refrigeration temperatures (4 °C or 8 °C) in vacuum packaging after heat activation or commercial pasteurization (90 °C, 10 min) was also studied. The latter treatment increased germination rates of surviving spores; however, some strains suffered damage and lost viability upon germination at 4 °C but recovered and grew at 8 °C. These findings highlight the need to account for variability in spore recovery and outgrowth during quantitative risk assessments for psychrotrophic B. cereus in ESL foods.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), Faculty of Veterinary, University of Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain; (V.F.); (L.C.); (S.C.)
| |
Collapse
|
2
|
Couvert O, Koullen L, Lochardet A, Huchet V, Thevenot J, Le Marc Y. Effects of carbon dioxide and oxygen on the growth rate of various food spoilage bacteria. Food Microbiol 2023; 114:104289. [PMID: 37290872 DOI: 10.1016/j.fm.2023.104289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023]
Abstract
The growth of six bacterial species (Carnobacterium maltaromaticum, Bacillus weihenstephanensis, Bacillus cereus, Paenibacillus spp., Leuconostoc mesenteroides and Pseudomonas fragi) was studied in various gas compositions. Growth curves were obtained at various oxygen concentrations (between 0.1 and 21%), or various carbon dioxide concentrations (between 0 and 100%). Decreasing the O2 concentration from 21% to about 3-5% has no effect on the bacterial growth rates, which are only affected by low oxygen levels. For each strain studied, the growth rate decreased linearly with carbon dioxide concentration, except for L. mesenteroides which remained insensible to this gas. Conversely, the most sensitive strain was totally inhibited by 50% of carbon dioxide in the gas phase at 8 °C. Predictive models were fitted, and the parameters characterizing the inhibitory effect of these two gases were estimated. This study provides new tools to help the food industry design suitable packaging for MAP storage.
Collapse
Affiliation(s)
- Olivier Couvert
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Loona Koullen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France
| | - Anne Lochardet
- Adria Food Technology Institute - UMT ACTIA 19.03 ALTER'iX, ZA Creac'h Gwen, F29196, Quimper, Cedex 1, France
| | - Véronique Huchet
- Adria Food Technology Institute - UMT ACTIA 19.03 ALTER'iX, ZA Creac'h Gwen, F29196, Quimper, Cedex 1, France
| | - Jonathan Thevenot
- Adria Food Technology Institute - UMT ACTIA 19.03 ALTER'iX, ZA Creac'h Gwen, F29196, Quimper, Cedex 1, France
| | - Yvan Le Marc
- Adria Food Technology Institute - UMT ACTIA 19.03 ALTER'iX, ZA Creac'h Gwen, F29196, Quimper, Cedex 1, France
| |
Collapse
|
3
|
Risk of Bacillus cereus in Relation to Rice and Derivatives. Foods 2021; 10:foods10020302. [PMID: 33540849 PMCID: PMC7913059 DOI: 10.3390/foods10020302] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
Rice is a very popular food throughout the world and the basis of the diet of the citizens of many countries. It is used as a raw material for the preparation of many complex dishes in which different ingredients are involved. Rice, as a consequence of their cultivation, harvesting, and handling, is often contaminated with spores of Bacillus cereus, a ubiquitous microorganism found mainly in the soil. B. cereus can multiply under temperature conditions as low as 4 °C in foods that contain rice and have been cooked or subjected to treatments that do not produce commercial sterility. B. cereus produces diarrhoeal or emetic foodborne toxin when the consumer eats food in which a sufficient number of cells have grown. These circumstances mean that every year many outbreaks of intoxication or intestinal problems related to this microorganism are reported. This work is a review from the perspective of risk assessment of the risk posed by B. cereus to the health of consumers and of some control measures that can be used to mitigate such a risk.
Collapse
|
4
|
Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci Technol 2019; 93:94-105. [PMID: 31764911 PMCID: PMC6853023 DOI: 10.1016/j.tifs.2019.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Spores of psychrotrophic Bacillus cereus may survive the mild heat treatments given to minimally processed chilled foods. Subsequent germination and cell multiplication during refrigerated storage may lead to bacterial concentrations that are hazardous to health. SCOPE AND APPROACH This review is concerned with the characterisation of factors that prevent psychrotrophic B. cereus reaching hazardous concentrations in minimally processed chilled foods and associated foodborne illness. A risk assessment framework is used to quantify the risk associated with B. cereus and minimally processed chilled foods. KEY FINDINGS AND CONCLUSIONS Bacillus cereus is responsible for two types of food poisoning, diarrhoeal (an infection) and emetic (an intoxication); however, no reported outbreaks of food poisoning have been associated with B. cereus and correctly stored commercially-produced minimally processed chilled foods. In the UK alone, more than 1010 packs of these foods have been sold in recent years without reported illness, thus the risk presented is very low. Further quantification of the risk is merited, and this requires additional data. The lack of association between diarrhoeal food poisoning and correctly stored commercially-produced minimally processed chilled foods indicates that an infectious dose has not been reached. This may reflect low pathogenicity of psychrotrophic strains. The lack of reported association of psychrotrophic B. cereus with emetic illness and correctly stored commercially-produced minimally processed chilled foods indicates that a toxic dose of the emetic toxin has not been formed. Laboratory studies show that strains form very small quantities of emetic toxin at chilled temperatures.
Collapse
Affiliation(s)
- Martin D. Webb
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Gary C. Barker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Kaarin E. Goodburn
- Chilled Food Associates, c/o 3 Weekley Wood Close, Kettering, NN14 1UQ, UK
| | - Michael W. Peck
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| |
Collapse
|
5
|
Guérin A, Dargaignaratz C, Clavel T, Broussolle V, Nguyen-the C. Impact of temperature and oxygen on the fate of Bacillus weihenstephanensis in a food-based medium. Food Microbiol 2019; 83:175-180. [DOI: 10.1016/j.fm.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/30/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
6
|
Modelling the effect of oxygen concentration on bacterial growth rates. Food Microbiol 2019; 77:21-25. [DOI: 10.1016/j.fm.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022]
|
7
|
Carter L, Chase HR, Gieseker CM, Hasbrouck NR, Stine CB, Khan A, Ewing-Peeples LJ, Tall BD, Gopinath GR. Analysis of enterotoxigenic Bacillus cereus strains from dried foods using whole genome sequencing, multi-locus sequence analysis and toxin gene prevalence and distribution using endpoint PCR analysis. Int J Food Microbiol 2018; 284:31-39. [PMID: 29990637 PMCID: PMC11541649 DOI: 10.1016/j.ijfoodmicro.2018.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
Bacillus cereus strains were isolated from dried foods, which included international brands of spices from South East Asia, Mexico and India purchased from several retail stores, samples of powdered infant formula (PIF), medicated fish feed and dietary supplements. The genetic diversity of 64 strains from spices and PIF was determined using a multiplex endpoint PCR assay designed to identify hemolysin BL, nonhemolytic enterotoxin, cytotoxin K, and enterotoxin FM toxin genes. Thirteen different B. cereus toxigenic gene patterns or profiles were identified among the strains. Randomly selected B. cereus strains were sequenced and compared with reference Genomic Groups from National Center Biotechnology Information using bioinformatics tools. A comprehensive multi-loci sequence analysis (MLSA) was designed using alleles from 25 known MLST genes specifically tailored for use with whole genome assemblies. A cohort of representative genomes of strains from a few FDA regulated commodities like dry foods and medicated fish feed was used to demonstrate the utility of the 25-MLSA approach for rapid clustering and identification of Genome Groups. The analysis clustered the strains from medicated fish feed, dry foods, and dietary supplements into phylogenetically-related groups. 25-MLSA also pointed to a greater diversity of B. cereus strains from foods and feed than previously recognized. Our integrated approach of toxin gene PCR, and to our knowledge, whole genome sequencing (WGS) based sequence analysis, may be the first of its kind that demonstrates enterotoxigenic potential and genomic diversity in parallel.
Collapse
Affiliation(s)
- Laurenda Carter
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA.
| | - Hannah R Chase
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA
| | - Charles M Gieseker
- U. S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD 20708, USA
| | - Nicholas R Hasbrouck
- U. S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD 20708, USA
| | - Cynthia B Stine
- U. S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD 20708, USA
| | - Ashraf Khan
- Division of Microbiology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Laura J Ewing-Peeples
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA
| | - Ben D Tall
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA
| | - Gopal R Gopinath
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA
| |
Collapse
|
8
|
Abakari G, Cobbina SJ, Yeleliere E. Microbial quality of ready-to-eat vegetable salads vended in the central business district of Tamale, Ghana. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2018. [DOI: 10.1186/s40550-018-0065-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Cuvelier ME, Soto P, Courtois F, Broyart B, Bonazzi C. Oxygen solubility measured in aqueous or oily media by a method using a non-invasive sensor. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Guérin A, Dargaignaratz C, Broussolle V, Clavel T, Nguyen-the C. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus. Food Microbiol 2016; 59:119-23. [DOI: 10.1016/j.fm.2016.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022]
|
11
|
Evelyn, Silva FV. Modeling the inactivation of psychrotrophic Bacillus cereus spores in beef slurry by 600MPa HPP combined with 38–70°C: Comparing with thermal processing and estimating the energy requirements. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Thermosonication versus thermal processing of skim milk and beef slurry: Modeling the inactivation kinetics of psychrotrophic Bacillus cereus spores. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Chaix E, Guillaume C, Guillard V. Oxygen and Carbon Dioxide Solubility and Diffusivity in Solid Food Matrices: A Review of Past and Current Knowledge. Compr Rev Food Sci Food Saf 2014; 13:261-286. [DOI: 10.1111/1541-4337.12058] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/20/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Estelle Chaix
- UMR 1208 IATE Agropolymers Engineering and Emerging Technologies; Univ. Montpellier 2, CIRAD, INRA, Montpellier Supagro; CC 023 Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Carole Guillaume
- UMR 1208 IATE Agropolymers Engineering and Emerging Technologies; Univ. Montpellier 2, CIRAD, INRA, Montpellier Supagro; CC 023 Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Valérie Guillard
- UMR 1208 IATE Agropolymers Engineering and Emerging Technologies; Univ. Montpellier 2, CIRAD, INRA, Montpellier Supagro; CC 023 Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|
14
|
A quantitative microbiological exposure assessment model for Bacillus cereus in REPFEDs. Int J Food Microbiol 2013; 166:433-49. [DOI: 10.1016/j.ijfoodmicro.2013.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/04/2013] [Accepted: 08/06/2013] [Indexed: 11/18/2022]
|
15
|
de Sarrau B, Clavel T, Zwickel N, Despres J, Dupont S, Beney L, Tourdot-Maréchal R, Nguyen-The C. Unsaturated fatty acids from food and in the growth medium improve growth of Bacillus cereus under cold and anaerobic conditions. Food Microbiol 2013; 36:113-22. [PMID: 24010589 DOI: 10.1016/j.fm.2013.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/12/2013] [Accepted: 04/15/2013] [Indexed: 11/17/2022]
Abstract
In a chemically defined medium and in Luria broth, cold strongly reduced maximal population density of Bacillus cereus ATCC 14579 in anaerobiosis and caused formation of filaments. In cooked spinach, maximal population density of B. cereus in anaerobiosis was the same at cold and optimal temperatures, with normal cell divisions. The lipid containing fraction of spinach, but not the hydrophilic fraction, restored growth of B. cereus under cold and anaerobiosis when added to the chemically defined medium. This fraction was rich in unsaturated, low melting point fatty acids. Addition of phosphatidylcholine containing unsaturated, low melting point, fatty acids similarly improved B. cereus anaerobic growth at cold temperature. Addition of hydrogenated phosphatidylcholine containing saturated, high melting point, fatty acids did not modify growth. Fatty acids from phospholipids, from spinach and from hydrogenated phosphatidylcholine, although normally very rare in B. cereus, were inserted in the bacterium membrane. Addition of phospholipids rich in unsaturated fatty acids to cold and anaerobic cultures, increased fluidity of B. cereus membrane lipids, to the same level as those from B. cereus normally cold adapted, i.e. grown aerobically at 15 °C. B. cereus is therefore able to use external fatty acids from foods or from the growth medium to adapt its membrane to cold temperature under anaerobiosis, and to recover the maximal population density achieved at optimal temperature.
Collapse
Affiliation(s)
- Benoît de Sarrau
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
de Sarrau B, Clavel T, Clerté C, Carlin F, Giniès C, Nguyen-The C. Influence of anaerobiosis and low temperature on Bacillus cereus growth, metabolism, and membrane properties. Appl Environ Microbiol 2012; 78:1715-23. [PMID: 22247126 PMCID: PMC3298147 DOI: 10.1128/aem.06410-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/02/2012] [Indexed: 02/02/2023] Open
Abstract
The impact of simultaneous anaerobiosis and low temperature on growth parameters, metabolism, and membrane properties of Bacillus cereus ATCC 14579 was studied. No growth was observed under anaerobiosis at 12°C. In bioreactors, growth rates and biomass production were drastically reduced by simultaneous anaerobiosis and low temperature (15°C). The two conditions had a synergistic effect on biomass reduction. In anaerobic cultures, fermentative metabolism was modified by low temperature, with a marked reduction in ethanol production leading to a lower ability to produce NAD(+). Anaerobiosis reduced unsaturated fatty acids at both low optimal temperatures. In addition, simultaneous anaerobiosis and low temperatures markedly reduced levels of branched-chain fatty acids compared to all other conditions (accounting for 33% of total fatty acids against more 71% for low-temperature aerobiosis, optimal-temperature aerobiosis, and optimal-temperature anaerobiosis). This corresponded to high-melting-temperature lipids and to low-fluidity membranes, as indicated by differential scanning calorimetry, 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy, and infrared spectroscopy. This is in contrast to requirements for cold adaptation. A link between modification in the synthesis of metabolites of fermentative metabolism and the reduction of branched-chain fatty acids at low temperature under anaerobiosis, through a modification of the oxidizing capacity, is assumed. This link may partly explain the impact of low temperature and anaerobiosis on membrane properties and growth performance.
Collapse
Affiliation(s)
- Benoît de Sarrau
- INRA, UMR408 Sécurité et Qualité des Produits d’Origine Végétale, Avignon, France.
| | | | | | | | | | | |
Collapse
|