1
|
Canonico L, Agarbati A, Comitini F, Ciani M. Relationships Among Origin, Genotype, and Oenological Traits of Brettanomyces Yeasts. Int J Mol Sci 2024; 25:11781. [PMID: 39519331 PMCID: PMC11547160 DOI: 10.3390/ijms252111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Brettanomyces yeasts play a relevant role in the fermentation industry, showing controversial behavior. There is growing interest in these yeasts in the fermentation industry as beer and bioethanol production, while in winemaking, they are considered spoilage microorganisms mainly used to produce ethyl phenols. These compounds may alter wine's organoleptic characteristics, leading to significant economic loss. In this work, 45 Brettanomyces strains from seven different environments were genotyped and assayed for some oenological characters to investigate the possible relationship among sources of isolation, genotype characterization, and oenological characters. The results of biotyping showed four main clusters which were also distinguished according to the oenological characters. The oenological characters also distinguished the strains based on the isolation source, suggesting an overall relation between origin and biotypes. The negative correlation between fermentation rate and ethyl phenols production in the Brettanomyces population may indicate the adaptation to hostile environments differently from crop strains that showed the opposite behavior. The overall results contribute to clarifying some features of Brettanomyces yeasts, even if further investigations into the ability of these yeasts to colonize winemaking environments are needed.
Collapse
Affiliation(s)
| | | | | | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (A.A.); (F.C.)
| |
Collapse
|
2
|
Onishi K, Furuno M, Mori A, Fukusaki E. New insights into the characteristic flavor components of traditional sour beers such as Lambic and Flanders Red Ale beers. J Biosci Bioeng 2024; 138:54-62. [PMID: 38653595 DOI: 10.1016/j.jbiosc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the demand for beers with a variety of flavors has increased considerably owing to the diversification of consumer preferences. Sour beer is characterized by a sour taste unlike normal beer flavor, and previous studies on sour beer have been primarily focused on addressing issues, such as inconsistent product quality and long production time, and on the associated microorganisms. Scientific knowledge regarding the characteristic flavor of sour beer and flavor components is limited. Therefore, in this study, we aimed to clarify the characteristic sensory attributes of sour beer and the component profiles that explain these attributes. Component analysis was performed on 10 traditional sour beers (eight Flanders Red Ales and two Lambics), using untargeted gas chromatography-mass spectrometry with liquid-liquid extraction, liquid chromatography-mass spectrometry targeting amines and anionic compounds. Further, sensory evaluation was conducted by well-trained panelists via quantitative descriptive analysis. Orthogonal partial least squares regression analysis was also conducted to investigate candidate flavor components. Thus, 261 components were identified and our methods could explain the flavor attributes of the examined samples. Comprehensive component profiling data also showed that differences in fermentation method, barrel aging duration, and blending ratio affected beer flavor. Further, Lambics were found to be characterized by citrus and phenolic aroma, while Flanders Red Ales were characterized by solvent-like aroma, sourness complexity, full bodied, graininess, astringency, and bitterness. These findings may serve as a basis for addressing issues related to sour beer production and may facilitate process design for obtaining targeted sour beer flavors.
Collapse
Affiliation(s)
- Kyoya Onishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Furuno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Asuka Mori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Yang W, Zheng Z, Shi Y, Reynolds AG, Duan C, Lan Y. Volatile phenols in wine: overview of origin, formation, analysis, and sensory expression. Crit Rev Food Sci Nutr 2024; 65:3001-3026. [PMID: 38766770 DOI: 10.1080/10408398.2024.2354526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Volatile phenols impart particular aromas to wine. Due to their distinctive aroma characteristics and low sensory thresholds, volatile phenols can easily influence and modify the aroma of wine. Since these compounds can be formed in wines in various ways, it is necessary to clarify the possible sources of each volatile phenol to achieve management during the winemaking process. The sources of volatile phenols in wine are divided into berry-derived, fermentation-derived, and oak-derived. The pathways and factors influencing the formation of volatile phenols from each source are then reviewed respectively. In addition, an overview of the sensory impact of volatile phenols is given, both in terms of the aroma these volatile phenols directly bring to the wine and their contribution through aroma interactions. Finally, as an essential basis for exploring the scientific problems of volatile phenols in wine, approaches to quantitation of volatile phenols and their precursors are discussed in detail. With the advancement of analytical techniques, more details on volatile phenols have been discovered. Further exploration is worthwhile to achieve more detailed monitoring and targeted management of volatile phenols in wine.
Collapse
Affiliation(s)
- Weixi Yang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ziang Zheng
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | | | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| |
Collapse
|
4
|
Zhao Y, Wang Y, Li H, Zhou Z, Wu Z, Zhang W. Integrating metabolomics and metatranscriptomics to explore the formation pathway of aroma-active volatile phenolics and metabolic profile during industrial radish paocai fermentation. Food Res Int 2023; 167:112719. [PMID: 37087217 DOI: 10.1016/j.foodres.2023.112719] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The aroma profile of industrial Sichuan paocai is formed and regulated by complex physiological and biochemical reactions and microbial metabolism, but little is known so far. In this study, we comprehensively analyzed the changes of metabolic profile and gene expression profile, mainly explored the formation pathways of two skeleton aroma-active compounds, 4-ethylphenol and 4-ethylguaiacol, and verified the pathways at multiple levels. The results showed that a total of 136 volatile metabolites and 560 non-volatile metabolites were identified in the whole fermentation process. The types and concentrations of metabolites in paocai were higher than those in brine, and gradually converged with fermentation. Differential analysis of metabolism and transcription levels were both enriched in three pathways: amino acid metabolism, phenylpropanoid metabolism and lipid metabolism. Among them, 4-ethylphenol and 4-ethylguaiacol, the products of the phenylpropanoid metabolism, were converted from p-coumaric acid and ferulic acid in plant cell walls, respectively. Under the action of decarboxylase produced by yeast (such as Debaryomyces Hansenii) and lactic acid bacteria (such as Lactobacillus versmoldensis), intermediate metabolites vinylphenols were produced, and the intermediate metabolites further produce the final products under the action of vinylphenol reductase. The key gene copy number, enzyme activity, and metabolite concentration in the pathways were detected to provide stronger evidence for the formation pathways. This study provided meaningful new insights for the development of aroma-producing enzymes and further guidance for the flavor improvement of industrial paocai.
Collapse
|
5
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
6
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
7
|
Benito-Vazquez I, Belda I, Ruiz J, Vicente J, Navascués E, Marquina D, Santos A. Direct detection of Brettanomyces bruxellensis in wine by PCR targeting the vinylphenol reductase gene. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
|
9
|
Colomer MS, Chailyan A, Fennessy RT, Olsson KF, Johnsen L, Solodovnikova N, Forster J. Assessing Population Diversity of Brettanomyces Yeast Species and Identification of Strains for Brewing Applications. Front Microbiol 2020; 11:637. [PMID: 32373090 PMCID: PMC7177047 DOI: 10.3389/fmicb.2020.00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Brettanomyces yeasts have gained popularity in many sectors of the biotechnological industry, specifically in the field of beer production, but also in wine and ethanol production. Their unique properties enable Brettanomyces to outcompete conventional brewer’s yeast in industrially relevant traits such as production of ethanol and pleasant flavors. Recent advances in next-generation sequencing (NGS) and high-throughput screening techniques have facilitated large population studies allowing the selection of appropriate yeast strains with improved traits. In order to get a better understanding of Brettanomyces species and its potential for beer production, we sequenced the whole genome of 84 strains, which we make available to the scientific community and carried out several in vitro assays for brewing-relevant properties. The collection includes isolates from different substrates and geographical origin. Additionally, we have included two of the oldest Carlsberg Research Laboratory isolates. In this study, we reveal the phylogenetic pattern of Brettanomyces species by comparing the predicted proteomes of each strain. Furthermore, we show that the Brettanomyces collection is well described using similarity in genomic organization, and that there is a direct correlation between genomic background and phenotypic characteristics. Particularly, genomic patterns affecting flavor production, maltose assimilation, beta-glucosidase activity, and phenolic off-flavor (POF) production are reported. This knowledge yields new insights into Brettanomyces population survival strategies, artificial selection pressure, and loss of carbon assimilation traits. On a species-specific level, we have identified for the first time a POF negative Brettanomyces anomalus strain, without the main spoilage character of Brettanomyces species. This strain (CRL-90) has lost DaPAD1, making it incapable of converting ferulic acid to 4-ethylguaiacol (4-EG) and 4-ethylphenol (4-EP). This loss of function makes CRL-90 a good candidate for the production of characteristic Brettanomyces flavors in beverages, without the contaminant increase in POF. Overall, this study displays the potential of exploring Brettanomyces yeast species biodiversity to find strains with relevant properties applicable to the brewing industry.
Collapse
Affiliation(s)
- Marc Serra Colomer
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark.,National Institute for Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Chailyan
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | - Ross T Fennessy
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | - Kim Friis Olsson
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | | | | | - Jochen Forster
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| |
Collapse
|
10
|
Cibrario A, Miot-Sertier C, Paulin M, Bullier B, Riquier L, Perello MC, de Revel G, Albertin W, Masneuf-Pomarède I, Ballestra P, Dols-Lafargue M. Brettanomyces bruxellensis phenotypic diversity, tolerance to wine stress and wine spoilage ability. Food Microbiol 2019; 87:103379. [PMID: 31948620 DOI: 10.1016/j.fm.2019.103379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
Brettanomyces bruxellensis is a yeast species found in many fermented matrices. A high level of genetic diversity prevails in this species and was recently connected with tolerance to sulfur dioxide, the main preservative used in wine. We therefore examine other phenotypes that may modulate the ability of the species to spoil wine, in a selection of representative strains. The species shows a fairly high homogeneity with respect to the carbohydrates that can support growth, but more diverse behaviors regarding tolerance to low pH or ethanol. Thought no clear link can be drawn with genotype, some strains appear more tolerant than the others, mainly in the AWRI1499 like genetic group. Volatile phenol production is ubiquitous within the species, independent from yeast growth profile and not affected by the nature of the growth substrate. The specific production. n rate of volatile phenol production raises in case of increased aeration. It is little affected by pH decrease until 3.0 or by ethanol concentration increase up to 12% vol, but it decreased in case of increased constraint (pH < 3.0, Ethanol ≥14% vol) or combination of constraints. All the strain studied have thus the ability to spoil wine but some outstanding dangerous strains can even spoil the wine with high level of constrainst.
Collapse
Affiliation(s)
- Alice Cibrario
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Margot Paulin
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Bastien Bullier
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Laurent Riquier
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Marie-Claire Perello
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Gilles de Revel
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Warren Albertin
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Patricia Ballestra
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave D'Ornon, France.
| |
Collapse
|
11
|
Tiukova IA, Jiang H, Dainat J, Hoeppner MP, Lantz H, Piskur J, Sandgren M, Nielsen J, Gu Z, Passoth V. Assembly and Analysis of the Genome Sequence of the Yeast Brettanomyces naardenensis CBS 7540. Microorganisms 2019; 7:microorganisms7110489. [PMID: 31717754 PMCID: PMC6921048 DOI: 10.3390/microorganisms7110489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
Brettanomyces naardenensis is a spoilage yeast with potential for biotechnological applications for production of innovative beverages with low alcohol content and high attenuation degree. Here, we present the first annotated genome of B. naardenensis CBS 7540. The genome of B. naardenensis CBS 7540 was assembled into 76 contigs, totaling 11,283,072 nucleotides. In total, 5168 protein-coding sequences were annotated. The study provides functional genome annotation, phylogenetic analysis, and discusses genetic determinants behind notable stress tolerance and biotechnological potential of B. naardenensis.
Collapse
Affiliation(s)
- Ievgeniia A. Tiukova
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden;
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden; (M.S.); (V.P.)
- Correspondence: ; Tel.: +46-31-772-3801
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Jacques Dainat
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 752 37 Uppsala, Sweden; (J.D.); (M.P.H.); (H.L.)
- National Bioinformatics Infrastructure Sweden (NBIS), 752 37 Uppsala, Sweden
| | - Marc P. Hoeppner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 752 37 Uppsala, Sweden; (J.D.); (M.P.H.); (H.L.)
- National Bioinformatics Infrastructure Sweden (NBIS), 752 37 Uppsala, Sweden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Henrik Lantz
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 752 37 Uppsala, Sweden; (J.D.); (M.P.H.); (H.L.)
- National Bioinformatics Infrastructure Sweden (NBIS), 752 37 Uppsala, Sweden
| | - Jure Piskur
- Department of Biology, Lund University, 223 62 Lund, Sweden;
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden; (M.S.); (V.P.)
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden;
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden; (M.S.); (V.P.)
| |
Collapse
|
12
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
13
|
Wang R, Chen YC, Lai YJ, Lu TJ, Huang ST, Lo YC. Dekkera bruxellensis, a beer yeast that specifically bioconverts mogroside extracts into the intense natural sweetener siamenoside I. Food Chem 2019; 276:43-49. [DOI: 10.1016/j.foodchem.2018.09.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
|
14
|
Santamaría L, Reverón I, de Felipe FL, de Las Rivas B, Muñoz R. Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols. Appl Environ Microbiol 2018; 84:e01064-18. [PMID: 29934329 PMCID: PMC6102998 DOI: 10.1128/aem.01064-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
Ethylphenols are strong odorants produced by microbial activity that are described as off flavors in several foods. Lactobacillus plantarum is a lactic acid bacterial species able to produce ethylphenols by the reduction of vinylphenols during the metabolism of hydroxycinnamic acids. However, the reductase involved has not been yet uncovered. In this study, the involvement in vinylphenol reduction of a gene encoding a putative reductase (lp_3125) was confirmed by the absence of reduction activity in the Δlp_3125 knockout mutant. The protein encoded by lp_3125, VprA, was recombinantly produced in Escherichia coli VprA was assayed against vinylphenols (4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol), and all were reduced to their corresponding ethylphenols (4-ethylphenol, 4-ethylcatechol, and 4-ethylguaiacol). PCR and high-performance liquid chromatography (HPLC) detection methods revealed that the VprA reductase is not widely distributed among the lactic acid bacteria studied and that only the bacteria possessing the vprA gene were able to produce ethylphenol from vinylphenol. However, all the species belonging to the L. plantarum group were ethylphenol producers. The identification of the L. plantarum VprA protein involved in hydroxycinnamate degradation completes the route of degradation of these compounds in lactic acid bacteria.IMPORTANCE The presence of volatile phenols is considered a major organoleptic defect of several fermented alcoholic beverages. The biosynthesis of these compounds has been mainly associated with Brettanomyces/Dekkera yeasts. However, the potential importance of lactic acid bacteria in volatile phenol spoilage is emphasized by reports describing a faster ethylphenol production by these bacteria than by yeasts. The genetic identification of the bacterial vinylphenol reductase involved in volatile phenol production provides new insights into the role of lactic acid bacteria in the production of these off flavors. The development of a molecular method for the detection of ethylphenol-producing bacteria could be helpful to design strategies to reduce the bacterial production of vinylphenols in fermented foods.
Collapse
Affiliation(s)
- Laura Santamaría
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Madrid, Spain
| | - Inés Reverón
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Madrid, Spain
| | - Félix López de Felipe
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Madrid, Spain
| | - Blanca de Las Rivas
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Madrid, Spain
| | - Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Madrid, Spain
| |
Collapse
|
15
|
Serra Colomer M, Funch B, Forster J. The raise of Brettanomyces yeast species for beer production. Curr Opin Biotechnol 2018; 56:30-35. [PMID: 30173102 DOI: 10.1016/j.copbio.2018.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The adequate application of Brettanomyces species could raise a potential opportunity for the beer industry, generating new products and optimizing production processes. Several valuable properties like high ethanol yield, tolerance to low pH and production of unique flavors have brought this yeast species into the spotlight. Aroma and flavor production of Brettanomyces in beer is currently under discussion, and it can be adjusted if the mechanism insights are understood. This review summarizes the recent findings in physiological, genetic and biochemical traits related to the application of Brettanomyces species for brewing.
Collapse
Affiliation(s)
- Marc Serra Colomer
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Birgitte Funch
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Jochen Forster
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| |
Collapse
|
16
|
|
17
|
Valdetara F, Fracassetti D, Campanello A, Costa C, Foschino R, Compagno C, Vigentini I. A Response Surface Methodology Approach to Investigate the Effect of Sulfur Dioxide, pH, and Ethanol on DbCD and DbVPR Gene Expression and on the Volatile Phenol Production in Dekkera/Brettanomyces bruxellensis CBS2499. Front Microbiol 2017; 8:1727. [PMID: 28955312 PMCID: PMC5601905 DOI: 10.3389/fmicb.2017.01727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/24/2017] [Indexed: 11/21/2022] Open
Abstract
Dekkera/Brettanomyces bruxellensis, the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase (DbCD) and the vinylphenol reductase (DbVPR), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO2) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC, DbALD, DbEF, DbACT, and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect (p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO2, pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO2, pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect as individual factors. The obtained results can be useful to improve the SO2 management at the grape harvesting and during winemaking in order to minimize the D./B. bruxellensis spoilage.
Collapse
Affiliation(s)
- Federica Valdetara
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | - Daniela Fracassetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | - Alessia Campanello
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | | | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|