1
|
Cechin CDF, Carvalho GG, Bastos CP, Kabuki DY. Cronobacter spp. in foods of plant origin: occurrence, contamination routes, and pathogenic potential. Crit Rev Food Sci Nutr 2023; 63:12398-12412. [PMID: 35866516 DOI: 10.1080/10408398.2022.2101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cronobacter is an emerging bacterial pathogen associated with infections such as necrotizing enterocolitis, sepsis, and meningitis in neonates and infants, related to the consumption of powdered infant formula. In addition, this bacterium can also cause infections in adults by the ingestion of other foods. Thus, this review article aims to report the occurrence and prevalence of Cronobacter spp. in foods of plant origin, as well as the possible sources and routes of contamination in these products, and the presence of pathogenic strains in these foods. Cronobacter was present in a wide variety of cereal-based foods, vegetables, herbs, spices, ready-to-eat foods, and foods from other categories. This pathogen was also found in cultivation environments, such as soils, compost, animal feces, rice and vegetable crops, as well as food processing industries, and domestic environments, thus demonstrating possible contamination routes. Furthermore, sequence types (ST) involved in clinical cases and isolates resistant to antibiotics were found in Cronobacter strains isolated from food of plant origin. The identification of Cronobacter spp. in plant-based foods is of great importance to better elucidate the vehicles and routes of contamination in the primary production chain and processing facility, until the final consumption of the food, to prevent infections.
Collapse
Affiliation(s)
- Carine da Fonseca Cechin
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Guimarães Carvalho
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Peixoto Bastos
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Garzón-García AM, Ruiz-Cruz S, Dussán-Sarria S, Hleap-Zapata JI, Márquez-Ríos E, Del-Toro-Sánchez CL, Tapia-Hernández JA, Canizales-Rodríguez DF, Ocaño-Higuera VM. Effect of UV-C Postharvest Disinfection on the Quality of Fresh-Cut 'Tommy Atkins' Mango. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/159290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
3
|
Ren Z, Wang M, Heng Y, Tian M, Jiang H, Zhang J, Song Y, Zhu Y. Bactericidal effects of a low-temperature acidic electrolyzed water on quantitative suspension, packaging and contact surface in food cold chain. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Sun J, Jiang X, Chen Y, Lin M, Tang J, Lin Q, Fang L, Li M, Hung YC, Lin H. Recent trends and applications of electrolyzed oxidizing water in fresh foodstuff preservation and safety control. Food Chem 2022; 369:130873. [PMID: 34479004 DOI: 10.1016/j.foodchem.2021.130873] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022]
Abstract
With the growing demand for safe and nutritious foods, some novel food nonthermal sterilization technologies were developed in recent years. Electrolyzed oxidizing water (EOW) has the characteristics of strong antimicrobial ability, wide sterilization range, and posing no threat to the humans and environment. Furthermore, EOW can be used as a green disinfectant to replace conventional production water used in the food industry since it can be converted to the ordinary water after sterilization. This review summarizes recent developments of the EOW technology in food industry. It also reviews the preparation principles, physical and chemical characteristics, antimicrobial mechanisms of EOW, and inactivation of toxins using EOW. In addition, this study highlights the applications of EOW in food preservation and safety control, as well as the future prospects of this novel technology. EOW is a promising nonthermal sterilization technology that has great potential for applications in the food industry.
Collapse
Affiliation(s)
- Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211-5160, United States
| | - Jinyan Tang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qin Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Ling Fang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Bose AK, Beaver CL, Maddipatla D, Rossbach S, Atashbar MZ. In-vitro Analysis of Thin-Film Microplasma Discharge Devices for Surface Sterilization. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2022.3147468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Ren M, Yu X, Mujumdar AS, Yagoub AEGA, Chen L, Zhou C. Visualizing the knowledge domain of pulsed light technology in the food field: A scientometrics review. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Liao Q, Tao H, Li Y, Xu Y, Wang HL. Evaluation of Structural Changes and Molecular Mechanism Induced by High Hydrostatic Pressure in Enterobacter sakazakii. Front Nutr 2021; 8:739863. [PMID: 34631769 PMCID: PMC8495323 DOI: 10.3389/fnut.2021.739863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
The contamination of infant milk and powder with Enterobacter sakazakii poses a risk to human health and frequently caused recalls of affected products. This study aims to explore the inactivation mechanism of E. sakazakii induced by high hydrostatic pressure (HHP), which, unlike conventional heat treatment, is a nonthermal technique for pasteurization and sterilization of dairy food without deleterious effects. The mortality of E. sakazakii under minimum reaction conditions (50 MPa) was 1.42%, which was increased to 33.12% under significant reaction conditions (400 MPa). Scanning electron microscopy (SEM) and fluorescent staining results showed that 400 MPa led to a loss of physical integrity of cell membranes as manifested by more intracellular leakage of nucleic acid, intracellular protein and K+. Real-time quantitative PCR (RT-qPCR) analysis presents a downregulation of three functional genes (glpK, pbpC, and ompR), which were involved in cell membrane formation, indicating a lower level of glycerol utilization, outer membrane protein assembly, and environmental tolerance. In addition, the exposure of E. sakazakii to HHP modified oxidative stress, as reflected by the high activity of catalase and super oxide dismutase. The HHP treatment lowered down the gene expression of flagellar proteins (fliC, flgI, fliH, and flgK) and inhibited biofilm formation. These results determined the association of genotype to phenotype in E. sakazakii induced by HHP, which was used for the control of food-borne pathogens.
Collapse
Affiliation(s)
- Qiaoming Liao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yali Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Yi Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
8
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
9
|
Application of electrolyzed water in postharvest fruits and vegetables storage: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Berthold-Pluta A, Garbowska M, Stefańska I, Stasiak-Różańska L, Aleksandrzak-Piekarczyk T, Pluta A. Microbiological Quality of Nuts, Dried and Candied Fruits, Including the Prevalence of Cronobacter spp. Pathogens 2021; 10:900. [PMID: 34358048 PMCID: PMC8308658 DOI: 10.3390/pathogens10070900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Cronobacter genus bacteria are food-borne pathogens. Foods contaminated with Cronobacter spp. may pose a risk to infants or immunocompromised adults. The aim of this study was to determine the microbiological quality of nuts, seeds and dried fruits with special emphasis on the occurrence of Cronobacter spp. Analyses were carried out on 64 samples of commercial nuts (20 samples), dried fruits (24), candied fruits (8), seeds (4), and mixes of seeds, dried fruits and nuts (8). The samples were tested for the total plate count of bacteria (TPC), counts of yeasts and molds, and the occurrence of Cronobacter spp. Cronobacter isolates were identified and differentiated by PCR-RFLP (Polymerase Chain Reaction - Restriction Fragments Length Polymorphism) and RAPD-PCR (Random Amplified Polymorphic DNA by PCR) analysis. TPC, and yeasts and molds were not detected in 0.1 g of 23.4%, 89.1%, and 32.8% of the analyzed samples. In the remaining samples, TPC were in the range of 1.2-5.3 log CFU g-1. The presence/absence of Cronobacter species was detected in 12 (18.8%) samples of: nuts (10 samples), and mixes (2 samples). The 12 strains of Cronobacter spp. included: C. sakazakii (3 strains), C. malonaticus (5), and C. turicensis (4). The results of this study contribute to the determination of the presence and species identification of Cronobacter spp. in products of plant origin intended for direct consumption.
Collapse
Affiliation(s)
- Anna Berthold-Pluta
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | - Monika Garbowska
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Lidia Stasiak-Różańska
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | | | - Antoni Pluta
- Department of Technology and Food Assessment, Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| |
Collapse
|
11
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Chelliah R, Shin S, Park S, Oh DH, Wang MH. Slightly acidic electrolyzed water combination with antioxidants and fumaric acid treatment to maintain the quality of fresh-cut bell peppers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Giannakourou MC, Tsironi TN. Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation. Foods 2021; 10:830. [PMID: 33920447 PMCID: PMC8068883 DOI: 10.3390/foods10040830] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, consumers' demand for fresh, nutritious, and convenient food has shown a significant rise. This trend has forced increased sales of minimally processed and/or pre-packed fruit- and vegetable-based products. New product development and the diversification of plant-based foods have supported this growth. The food production sector should balance this requirement with the necessity to provide safe food with extended shelf life while meeting consumer demands for novel, nutritious, and affordable food products. The use of alternative "soft hurdles" may result in a decrease in the rate of food deterioration and spoilage attributed to microbial activity or other physiological/chemical degradation reactions. The objective of the article is to provide a systematic review of the preservative effect of the available hurdles implemented during processing and packaging of fresh-cut fruits and vegetables, focusing on recent applications aiming at improving product quality and prolonging their limited shelf life.
Collapse
Affiliation(s)
- Maria C. Giannakourou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, School of Food Sciences, University of West Attica, Agiou Spyridonos, 12243 Athens, Greece;
| | - Theofania N. Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
13
|
Abstract
Electrolyzed oxidizing water (EOW) is one of the promising novel antimicrobial agents that have recently been proposed as the alternative to conventional decontamination methods such as heat and chemical sanitizers. Acidic EOW with pH ranging from 2 to 5 is regarded most applicable in the antimicrobial treatment of vegetables and meats. Neutral and alkaline electrolyzed water have also been explored in few studies for their applications in the food industry. Neutral electrolyzed water is proposed to solve the problems related to the storage and corrosion effect of acidic EOW. Recently, the research focus has been shifted toward the application of slightly acidic EOW as more effective with some supplemental physical and chemical treatment methods such as ultrasound and UV radiations. The different applications of electrolyzed water range from drinking water and wastewater to food, utensil, and hard surfaces. The recent studies also conclude that electrolyzed water is more effective in suspensions as compared with the food surfaces where longer retention times are required. The commercialization of EOW instruments is not adopted frequently in many countries due to the potential corrosion problems associated with acidic electrolyzed water. This review article summarizes the EOW types and possible mechanism of action as well as highlights the most recent research studies in the field of antimicrobial applications and cleaning. Electrolyzed water can replace conventional chemical decontamination methods in the industry and household. However, more research is needed to know its actual mechanism of antimicrobial action along with the primary concerns related to EOW in the processing of different food products.
Collapse
|
14
|
A Review on Individual and Combination Technologies of UV-C Radiation and Ultrasound in Postharvest Handling of Fruits and Vegetables. Processes (Basel) 2020. [DOI: 10.3390/pr8111433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet-C radiation and ultrasound technology are widely accepted and continuously being appraised as alternatives to conventional thermal techniques for decontamination of fruits and vegetables. However, studies in these areas have presented challenges related to quality, safety, limited capability, and cost of energy. This review paper presents an up-to-date summary of applications of ultraviolet-C radiation and ultrasound technology for postharvest handling of fruits and vegetables from relevant literature. The limitations associated with applications of ultraviolet-C radiation and ultrasound technology individually has prompted their combination alongside other antimicrobial strategies for enhanced bactericidal effect. The combination of ultraviolet-C radiation and ultrasound technology as a hurdle approach also provides enhanced efficiency, cost effectiveness, and reduced processing time without compromising quality. The review includes further scope of industrial-led collaboration and commercialization of ultraviolet-C radiation and ultrasound technology such as scale-up studies and process optimization.
Collapse
|
15
|
Graça A, Santo D, Pires-Cabral P, Quintas C. The effect of UV-C and electrolyzed water on yeasts on fresh-cut apple at 4 °C. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Green A, Popović V, Warriner K, Koutchma T. The efficacy of UVC LEDs and low pressure mercury lamps for the reduction of Escherichia coli O157:H7 and Listeria monocytogenes on produce. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Disinfection Efficacy of Slightly Acidic Electrolyzed Water Combined with Chemical Treatments on Fresh Fruits at the Industrial Scale. Foods 2019; 8:foods8100497. [PMID: 31615099 PMCID: PMC6835452 DOI: 10.3390/foods8100497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to investigate the efficacy of slightly acidic electrolyzed water (SAEW) combined with fumaric acid (FA) and calcium oxide (CaO) treatment on the microbial disinfection of fresh fruits including apple, mandarin, and tomato at the industrial scale. The combined treatments can significantly (p < 0.05) reduce the population of natural microbiota from the fruit surfaces and the treated samples showed good sensory qualities during refrigeration storage. In addition, decontamination of inoculated foodborne pathogens (Escherichia coli O157:H7 and Listeria monocytogenes) was carried out in the laboratory, and the combined treatments resulted in a reduction ranging from 2.85 to 5.35 log CFU/fruit, CaO followed by SAEW+FA treatment that resulted in significantly higher reduction than for SAEW+FA treatment. The technology developed by this study has been used in a fresh fruit industry and has greatly improved the quality of the products. These findings suggest that the synergistic properties of the combination of SAEW, FA, and CaO could be used in the fresh fruit industry as an effective sanitizer.
Collapse
|
18
|
Deng LZ, Mujumdar AS, Pan Z, Vidyarthi SK, Xu J, Zielinska M, Xiao HW. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Crit Rev Food Sci Nutr 2019; 60:2481-2508. [PMID: 31389257 DOI: 10.1080/10408398.2019.1649633] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With a growing demand for safe, nutritious, and fresh-like produce, a number of disinfection technologies have been developed. This review comprehensively examines the working principles and applications of several emerging disinfection technologies. The chemical treatments, including chlorine dioxide, ozone, electrolyzed water, essential oils, high-pressure carbon dioxide, and organic acids, have been improved as alternatives to traditional disinfection methods to meet current safety standards. Non-thermal physical treatments, such as UV-light, pulsed light, ionizing radiation, high hydrostatic pressure, cold plasma, and high-intensity ultrasound, have shown significant advantages in improving microbial safety and maintaining the desirable quality of produce. However, using these disinfection technologies alone may not meet the requirement of food safety and high product quality. Several hurdle technologies have been developed, which achieved synergistic effects to maximize lethality against microorganisms and minimize deterioration of produce quality. The review also identifies further research opportunities for the cost-effective commercialization of these technologies.
Collapse
Affiliation(s)
- Li-Zhen Deng
- College of Engineering, China Agricultural University, Beijing, China.,Engineering Research Center for Modern Agricultural Equipment & Facilities, Ministry of Education, Beijing, China.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | | | - Jinwen Xu
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | - Magdalena Zielinska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China.,Engineering Research Center for Modern Agricultural Equipment & Facilities, Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Cho K, Jeong D, Lee S, Bae H. Chlorination caused a shift in marine biofilm niches on microfiltration/ultrafiltration and reverse osmosis membranes and UV irradiation effectively inactivated a chlorine-resistant bacterium. Appl Microbiol Biotechnol 2018; 102:7183-7194. [DOI: 10.1007/s00253-018-9111-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/16/2018] [Accepted: 05/16/2018] [Indexed: 01/30/2023]
|
20
|
Fan X, Huang R, Chen H. Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|