1
|
Oliveira M, Barbosa J, Teixeira P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol Res 2025; 297:128187. [PMID: 40279724 DOI: 10.1016/j.micres.2025.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Following ingestion via contaminated food, Listeria monocytogenes faces multiple hurdles through the human digestive system, thereby influencing its capacity to cause infection. This review provides a comprehensive overview of the multifaceted mechanisms employed by L. monocytogenes to overcome gastrointestinal hurdles and interact with the host's microbiota, facing chemical and physical barriers such as saliva, stomach acidity, bile salts and mechanical clearance. Proposed evasion strategies will be highlighted, exploring the bacteriocins produced by L. monocytogenes, such as the well-described bacteriocin Listeriolysin S (LLS), a bacteriocin that inhibits inflammogenic species - Lmo2776, and a phage tail-like bacteriocin, monocin. The competitive dynamic interactions within the gut microbiota, as well as the modulation of microbiota composition and immune responses, will also be explored. Finally, the adhesion and invasion of the intestinal epithelium by L. monocytogenes is described, exploring the mechanism of pathogenesis, biofilm and aggregation capacities and other virulence factors. Unlike previous reviews that may focus on individual aspects of L. monocytogenes pathogenicity, this review offers a holistic perspective on the bacterium's ability to persist and cause infection, integrating information about survival strategies, including bacteriocin production, immune modulation, and virulence factors. By connecting recent findings on microbial interactions and infection dynamics, this review incorporates recent developments in the field and connects various lines of research that explore both host and microbial factors influencing infection outcomes.
Collapse
Affiliation(s)
- M Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - J Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - P Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
2
|
Yang H, Meng Y, Han X, Meng X, Yang B, Zhang C, Wang X, Yu J, Al-Asmari F, Dablool AS, Sameeh MY, Shi C. Changes in the ability of Listeria monocytogenes to resist thermal treatment and simulated gastric condition after exposure to sequential stresses in minced meat. Food Res Int 2024; 192:114765. [PMID: 39147557 DOI: 10.1016/j.foodres.2024.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
In this study, Listeria monocytogenes from minced pork was evaluated for changes in resistance to thermal treatment and gastric fluid following environmental stresses during food processing. Bacteria were exposed to cold stress, followed by successive exposures to different stressors (lactic acid (LA), NaCl, or Nisin), followed by thermal treatments, and finally, their gastrointestinal tolerance was determined. Adaptation to NaCl stress reduced the tolerance of L. monocytogenes to subsequent LA and Nisin stress. Adaptation to LA stress increased bacterial survival in NaCl and Nisin-stressed environments. Bacteria adapted to Nisin stress showed no change in tolerance to subsequent stress conditions. In addition, treatment with NaCl and LA enhanced the thermal tolerance of L. monocytogenes, but treatment with Nisin decreased the thermal tolerance of the bacteria. Almost all of the sequential stresses reduced the effect of a single stress on bacterial thermal tolerance. The addition of LA and Nisin as a second step of stress reduced the tolerance of L. monocytogenes to gastric fluid, whereas the addition of NaCl enhanced its tolerance. The results of this study are expected to inform processing conditions and sequences for meat preservation and processing and reduce uncertainty in risk assessment of foodborne pathogens due to stress adaptation.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yujie Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xintong Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinru Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co. Ltd., Yangling 712100, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Anas S Dablool
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Makkah 25100, Saudi Arabia
| | - Manal Y Sameeh
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah 24831, Saudi Arabia
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
3
|
Zou Y, Zhou C, Chang X, Zhao F, Ye K. Differential mechanism between Listeria monocytogenes strains with different virulence contaminating ready-to-eat sausages during the simulated gastrointestinal tract. Food Res Int 2024; 186:114312. [PMID: 38729688 DOI: 10.1016/j.foodres.2024.114312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.
Collapse
Affiliation(s)
- Yafang Zou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Cong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Xiaochen Chang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Fanwen Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
4
|
Zhang L, Parreira VR, Rahman A, Smith BA, Munther DS, Farber JM. Survival and predictive modeling of Listeria monocytogenes under simulated human gastric conditions in the presence of bovine milk products. Int J Food Microbiol 2023; 396:110201. [PMID: 37116301 DOI: 10.1016/j.ijfoodmicro.2023.110201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/15/2023] [Accepted: 04/01/2023] [Indexed: 04/30/2023]
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen which has been implicated in many outbreaks of foodborne diseases. This study evaluated the effects of gastric acidity and gastric digestion time of adults, L. monocytogenes strain and food type on the survival of L. monocytogenes under simulated stomach conditions of adults in in vitro gastric models with dynamic pH changes occurring throughout the exposure. Individual strains as well as a cocktail of L. monocytogenes, inoculated at 8 log CFU/mL in filtered bovine milk products, 0 % milk, 2 % milk, 2 % chocolate milk and 3.25 % milk, were introduced to the gastric models for 2 h. The survival of L. monocytogenes depended on a combination of factors, including gastric acidity and gastric digestion time of adults, L. monocytogenes strain, food type and recovery method (P < 0.05). The survival rates of L. monocytogenes inoculated in 2 % milk after a 2-h exposure to simulated gastric fluids with pH values of 1.5, 2.0 and 3.0 were 0.003 to 0.040 %, 22.7 to 43.4 % and 16.6 to 27.2 %, respectively. Fluid milk containing a higher milk fat content (3.25 % vs 0 % milk) protected L. monocytogenes from being inactivated when they were exposed to the human stomach model with a gastric acidity of pH 2.0. Compared to 0 % and 3.25 % milk, L. monocytogenes survived the best in 2 % chocolate milk, which appears to be due to the presence of milk fat (2 %) and the additional nutrients that are present in chocolate milk. A predictive mathematical model was developed that captured the population of the strains of L. monocytogenes under the in vitro conditions. This study advances our understanding of the behaviour of L. monocytogenes under various human gastric conditions and provides key parameters that can affect the survival of L. monocytogenes in the stomachs of adults. The mathematical models developed in this study can be used as a supplementary tool to help predict the survival of L. monocytogenes under similar scenarios and for relevant risk-assessment studies.
Collapse
Affiliation(s)
- Linkang Zhang
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Ashrafur Rahman
- Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
| | - Ben A Smith
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Daniel S Munther
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH 44115, USA
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Buberg ML, Wasteson Y, Lindstedt BA, Witsø IL. In vitro digestion of ESC-resistant Escherichia coli from poultry meat and evaluation of human health risk. Front Microbiol 2023; 14:1050143. [PMID: 36846779 PMCID: PMC9947789 DOI: 10.3389/fmicb.2023.1050143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The spread of antimicrobial resistance (AMR) has become a threat against human and animal health. Third and fourth generation cephalosporins have been defined as critically important antimicrobials by The World Health Organization. Exposure to Extended spectrum cephalosporin-resistant E. coli may result in consumers becoming carriers if these bacteria colonize the human gut or their resistance genes spread to other bacteria in the gut microbiota. In the case that these resistant bacteria at later occasions cause disease, their resistance characteristics may lead to failure of treatment and increased mortality. We hypothesized that ESC-resistant E. coli from poultry can survive digestion and thereby cause infections and/or spread their respective resistance traits within the gastro-intestinal tract. Methods In this study, a selection of 31 ESC-resistant E. coli isolates from retail chicken meat was exposed to a static in vitro digestion model (INFOGEST). Their survival, alteration of colonizing characteristics in addition to conjugational abilities were investigated before and after digestion. Whole genome data from all isolates were screened through a custom-made virulence database of over 1100 genes for virulence- and colonizing factors. Results and discussion All isolates were able to survive digestion. Most of the isolates (24/31) were able to transfer their bla CMY2-containing plasmid to E. coli DH5-á, with a general decline in conjugation frequency of digested isolates compared to non-digested. Overall, the isolates showed a higher degree of cell adhesion than cell invasion, with a slight increase after digestion compared non-digested, except for three isolates that displayed a major increase of invasion. These isolates also harbored genes facilitating invasion. In the virulence-associated gene analysis two isolates were categorized as UPEC, and one isolate was considered a hybrid pathogen. Altogether the pathogenic potential of these isolates is highly dependent on the individual isolate and its characteristics. Poultry meat may represent a reservoir and be a vehicle for dissemination of potential human pathogens and resistance determinants, and the ESC-resistance may complicate treatment in the case of an infection.
Collapse
Affiliation(s)
- May Linn Buberg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bjørn Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ingun Lund Witsø
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway,*Correspondence: Ingun Lund Witsø ✉
| |
Collapse
|
6
|
Effect of gastric pH and bile acids on the survival of Listeria monocytogenes and Salmonella Typhimurium during simulated gastrointestinal digestion. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Muchaamba F, Eshwar AK, Stevens MJA, Stephan R, Tasara T. Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles. Front Microbiol 2022; 12:792162. [PMID: 35058906 PMCID: PMC8764371 DOI: 10.3389/fmicb.2021.792162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a public health and food safety challenge due to its virulence and natural stress resistance phenotypes. The variable distribution of L. monocytogenes molecular subtypes with respect to food products and processing environments and among human and animal clinical listeriosis cases is observed. Sixty-two clinical and food-associated L. monocytogenes isolates were examined through phenome and genome analysis. Virulence assessed using a zebrafish infection model revealed serotype and genotype-specific differences in pathogenicity. Strains of genetic lineage I serotype 4b and multilocus sequence type clonal complexes CC1, CC2, CC4, and CC6 grew and survived better and were more virulent than serotype 1/2a and 1/2c lineage II, CC8, and CC9 strains. Hemolysis, phospholipase activity, and lysozyme tolerance profiles were associated with the differences observed in virulence. Osmotic stress resistance evaluation revealed serotype 4b lineage I CC2 and CC4 strains as more osmotolerant, whereas serotype 1/2c lineage II CC9 strains were more osmo-sensitive than others. Variable tolerance to the widely used quaternary ammonium compound benzalkonium chloride (BC) was observed. Some outbreak and sporadic clinical case associated strains demonstrated BC tolerance, which might have contributed to their survival and transition in the food-processing environment facilitating food product contamination and ultimately outbreaks or sporadic listeriosis cases. Genome comparison uncovered various moderate differences in virulence and stress associated genes between the strains indicating that these differences in addition to gene expression regulation variations might largely be responsible for the observed virulence and stress sensitivity phenotypic differences. Overall, our study uncovered strain and genotype-dependent variation in virulence and stress resilience among clinical and food-associated L. monocytogenes isolates with potential public health risk implications. The extensive genome and phenotypic data generated provide a basis for developing improved Listeria control strategies and policies.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| |
Collapse
|
8
|
Bacterial communication in the regulation of stress response in Listeria monocytogenes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Potassium Lactate as a Strategy for Sodium Content Reduction without Compromising Salt-Associated Antimicrobial Activity in Salami. Foods 2021; 10:foods10010114. [PMID: 33430446 PMCID: PMC7826916 DOI: 10.3390/foods10010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Reformulating recipes of ready-to-eat meat products such as salami to reduce salt content can mitigate the negative health impacts of a high salt diet. We evaluated the potential of potassium lactate (KL) as a sodium chloride (NaCl) replacer during salami production. NaCl and KL stress tolerance comparisons showed that four food-derived Listeria innocua isolates were suitable as biologically safe Listeria monocytogenes surrogates. Effects of the high salt (4% NaCl) concentration applied in standard salami recipes and a low salt (2.8% NaCl) plus KL (1.6%) combination on product characteristics and growth of contaminating Listeria and starter culture were compared. Simulated salami-ripening conditions applied in meat simulation broth and beef showed that the low salt plus KL combination retained similar to superior anti-Listeria activity compared to the high salt concentration treatment. Salami challenge tests showed that the low NaCl plus KL combination had comparable anti-Listeria activity as the high NaCl concentration during ripening and storage. No significant differences were detected in starter culture growth profiles and product characteristics between the high NaCl and low NaCl plus KL combination treated salami. In conclusion, KL replacement enabled a 30% NaCl reduction without compromising the product quality and antimicrobial benefits of high NaCl concentration inclusion.
Collapse
|
10
|
An agent-based simulator for the gastrointestinal pathway of Listeria monocytogenes. Int J Food Microbiol 2020; 333:108776. [PMID: 32693315 DOI: 10.1016/j.ijfoodmicro.2020.108776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/29/2019] [Accepted: 06/28/2020] [Indexed: 12/17/2022]
Abstract
We developed an agent-based gastric simulator for a human host to illustrate the within host survival mechanisms of Listeria monocytogenes. The simulator incorporates the gastric physiology and digestion processes that are critical for pathogen survival in the stomach. Mathematical formulations for the pH dynamics, stomach emptying time, and survival probability in the presence of gastric acid are integrated in the simulator to evaluate the portion of ingested bacteria that survives in the stomach and reaches the small intestine. The parameters are estimated using in vitro data relevant to the human stomach and L. monocytogenes. The simulator predicts that 5%-29% of ingested bacteria can survive a human stomach and reach the small intestine. In the absence of extensive scientific experiments, which are not feasible on the grounds of ethical and safety concerns, this simulator may provide a supplementary tool to evaluate pathogen survival and subsequent infection, especially with regards to the ingestion of small doses.
Collapse
|
11
|
Muchaamba F, Stephan R, Tasara T. β-Phenylethylamine as a Natural Food Additive Shows Antimicrobial Activity against Listeria monocytogenes on Ready-to-Eat Foods. Foods 2020; 9:E1363. [PMID: 32992828 PMCID: PMC7600551 DOI: 10.3390/foods9101363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen and a major cause of death associated with bacterial foodborne infections. Control of L. monocytogenes on most ready-to-eat (RTE) foods remains a challenge. The potential use of β-phenylethylamine (PEA) as an organic antimicrobial against L. monocytogenes was evaluated in an effort to develop a new intervention for its control. Using a collection of 62 clinical and food-related isolates we determined the minimum inhibitory concentration (MIC) of PEA against L. monocytogenes in different broth and agar media. Bologna type sausage (lyoner) and smoked salmon were used as food model systems to validate the in vitro findings. PEA had a growth inhibitory and bactericidal effect against L. monocytogenes both in in vitro experiments as well as on lyoner and smoked salmon. The MIC's ranged from 8 to 12.5 mg/mL. Furthermore, PEA also inhibited L. monocytogenes biofilm formation. Based on good manufacturing practices as a prerequisite, the application of PEA to RTE products might be an additional hurdle to limit L. monocytogenes growth thereby increasing food safety.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (R.S.); (T.T.)
| | | | | |
Collapse
|
12
|
Qian J, Zhang M, Dai C, Huo S, Ma H. Transcriptomic analysis of Listeria monocytogenes under pulsed magnetic field treatment. Food Res Int 2020; 133:109195. [DOI: 10.1016/j.foodres.2020.109195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
|
13
|
Liu Y, Orsi RH, Gaballa A, Wiedmann M, Boor KJ, Guariglia-Oropeza V. Systematic review of the Listeria monocytogenes σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol 2019; 14:801-828. [DOI: 10.2217/fmb-2019-0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Among the alternative sigma factors of Listeria monocytogenes, σB controls the largest regulon. The aim of this study was to perform a comprehensive review of σB-regulated genes, and the functions they confer. Materials & methods: A systematic search of PubMed and Web of Knowledge was carried out to identify members of the σB regulon based on experimental evidence of σB-dependent transcription and presence of a consensus σB-dependent promoter. Results: The literature review identified σB-dependent transcription units encompassing 304 genes encoding different functions including stress response and virulence. Conclusion: Our review supports the well-known roles of σB in virulence and stress response and provides new insight into novel roles for σB in metabolism and overall resilience of L. monocytogenes.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
14
|
Listeria monocytogenes survival in raw Atlantic salmon (Salmo salar) fillet under in vitro simulated gastrointestinal conditions by culture, qPCR and PMA-qPCR detection methods. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|