1
|
Formation of Listeria monocytogenes persister cells in the produce-processing environment. Int J Food Microbiol 2023; 390:110106. [PMID: 36753793 DOI: 10.1016/j.ijfoodmicro.2023.110106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Persisters are a subpopulation of growth-arrested cells that possess transient tolerance to lethal doses of antibiotics and can revert to an active state under the right conditions. Persister cells are considered as a public health concern. This study examined the formation of persisters by Listeria monocytogenes (LM) in an environment simulating a processing plant for leafy green production. Three LM strains isolated from California produce-processing plants and packinghouses with the strongest adherence abilities were used for this study. The impact of the cells' physiological status, density, and nutrient availability on the formation of persisters was also determined. Gentamicin at a dose of 100 mg/L was used for the isolation and screening of LM persisters. Results showed that the physiological status differences brought by culture preparation methods (plate-grown vs. broth-grown) did not impact persister formation (P > 0.05). Instead, higher persister ratios were found when cell density increased (P < 0.05). The formation of LM persister cells under simulated packinghouse conditions was tested by artificially inoculating stainless steel coupons with LM suspending in media with decreasing nutrient levels: brain heart infusion broth (1366 mg/L O2), produce-washing water with various organic loads (1332 mg/L O2 and 652 mg/L O2, respectively), as well as sterile Milli-Q water. LM survived in all suspensions at 4 °C with 85 % relative humidity for 7 days, with strain 483 producing the most persister cells (4.36 ± 0.294 Log CFU/coupon) on average. Although persister cell levels of LM 480 and 485 were reasonably steady in nutrient-rich media (i.e., BHI and HCOD), they declined in nutrient-poor media (i.e., LCOD and sterile Milli-Q water) over time. Persister populations decreased along with total viable cells, demonstrating the impact of available nutrients on the formation of persisters. The chlorine sensitivity of LM persister cells was evaluated and compared with regular LM cells. Results showed that, despite their increased tolerance to the antibiotic gentamicin, LM persisters were more susceptible to chlorine treatments (100 mg/L for 2 min) than regular cells.
Collapse
|
2
|
Addo KA, Li L, Li H, Yu Y, Xiao X. Osmotic stress relief antibiotic tolerance of 1,8-cineole in biofilm persister cells of Escherichia coli O157:H7 and expression of toxin-antitoxin system genes. Microb Pathog 2022; 173:105883. [DOI: 10.1016/j.micpath.2022.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
3
|
Brandl MT, Ivanek R, Zekaj N, Belias A, Wiedmann M, Suslow TV, Allende A, Munther DS. Weather stressors correlate with Escherichia coli and Salmonella enterica persister formation rates in the phyllosphere: a mathematical modeling study. ISME COMMUNICATIONS 2022; 2:91. [PMID: 37938340 PMCID: PMC9723732 DOI: 10.1038/s43705-022-00170-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 10/10/2023]
Abstract
Enteric pathogens can enter a persister state in which they survive exposure to antibiotics and physicochemical stresses. Subpopulations of such phenotypic dormant variants have been detected in vivo and in planta in the laboratory, but their formation in the natural environment remains largely unexplored. We applied a mathematical model predicting the switch rate to persister cell in the phyllosphere to identify weather-related stressors associated with E. coli and S. enterica persister formation on plants based on their population dynamics in published field studies from the USA and Spain. Model outputs accurately depicted the bi-phasic decay of bacterial population sizes measured in the lettuce and spinach phyllosphere in these studies. Predicted E. coli persister switch rate on leaves was positively and negatively correlated with solar radiation intensity and wind velocity, respectively. Likewise, predicted S. enterica persister switch rate correlated positively with solar radiation intensity; however, a negative correlation was observed with air temperature, relative humidity, and dew point, factors involved in water deposition onto the phylloplane. These findings suggest that specific environmental factors may enrich for dormant bacterial cells on plants. Our model quantifiably links persister cell subpopulations in the plant habitat with broader physical conditions, spanning processes at different granular scales.
Collapse
Affiliation(s)
- Maria T Brandl
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Albany, CA, 94710, USA.
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Nerion Zekaj
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, 44115, USA
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Trevor V Suslow
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ana Allende
- Research Group of Microbiology and Quality of Fruit and Vegetables, Food Science and Technology Department, CEBAS-CSIS, Campus Universitario de Espinardo, Murcia, E-30100, Spain
| | - Daniel S Munther
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
4
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
5
|
Brennan FP, Alsanius BW, Allende A, Burgess CM, Moreira H, Johannessen GS, Castro PML, Uyttendaele M, Truchado P, Holden NJ. Harnessing agricultural microbiomes for human pathogen control. ISME COMMUNICATIONS 2022; 2:44. [PMID: 37938739 PMCID: PMC9723689 DOI: 10.1038/s43705-022-00127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 08/24/2023]
Affiliation(s)
- Fiona P Brennan
- Teagasc, Department of Environment, Soils and Landuse, Johnstown Castle, Wexford, Ireland.
| | - Beatrix W Alsanius
- Department of Biosystems and Technology; Microbial Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ana Allende
- Food Safety and Quality Group, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Helena Moreira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Gro S Johannessen
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Mieke Uyttendaele
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium
| | - Pilar Truchado
- Food Safety and Quality Group, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | | |
Collapse
|
6
|
Chen H, Green A, Martz K, Wu X, Alzahrani A, Warriner K. The progress of type II persisters of Escherichia coli O157:H7 to a non-culturable state during prolonged exposure to antibiotic stress with revival being aided through acid-shock treatment and provision of methyl pyruvate. Can J Microbiol 2020; 67:518-528. [PMID: 33125853 DOI: 10.1139/cjm-2020-0339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persisters are a form of dormancy in bacteria that provide temporary resistance to antibiotics. The following reports on the formation of Escherichia coli O157:H7 E318 type II persisters from a protracted (8 days) challenge with ampicillin. Escherichia coli O157:H7 followed a multiphasic die-off pattern with an initial rapid decline (Phase I) of susceptible cells that transitioned to a slower rate representing tolerant cells (Phase II). After 24 h post-antibiotic challenge, the E. coli O157:H7 levels remained relatively constant at 2 log CFU/mL (Phase III), but became non-culturable within 8-days (Phase IV). The revival of persisters in Phase III could be achieved by the removal of antibiotic stress, although those in Phase IV required an extended incubation period or application of acid-shock. The carbon utilization profile of persister cells was less diverse compared with non-persisters, with only methyl pyruvate being utilized from the range tested. Inclusion of methyl pyruvate in tryptic soy agar revived non-cultural persisters, presumably by stimulating metabolism. The results suggest that persisters could be subdivided into culturable or non-culturable cells, with the former representing a transition state to the latter. The study provided insights into how to revive cells from dormancy to aid enumeration and control.
Collapse
Affiliation(s)
- Heather Chen
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Andrew Green
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Kailey Martz
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Xueyang Wu
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Abdulhakeem Alzahrani
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Keith Warriner
- Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Center of Public Health and Zoonosis, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Salcedo-Sora JE, Kell DB. A Quantitative Survey of Bacterial Persistence in the Presence of Antibiotics: Towards Antipersister Antimicrobial Discovery. Antibiotics (Basel) 2020; 9:E508. [PMID: 32823501 PMCID: PMC7460088 DOI: 10.3390/antibiotics9080508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bacterial persistence to antibiotics relates to the phenotypic ability to survive lethal concentrations of otherwise bactericidal antibiotics. The quantitative nature of the time-kill assay, which is the sector's standard for the study of antibiotic bacterial persistence, is an invaluable asset for global, unbiased, and cross-species analyses. Methods: We compiled the results of antibiotic persistence from antibiotic-sensitive bacteria during planktonic growth. The data were extracted from a sample of 187 publications over the last 50 years. The antibiotics used in this compilation were also compared in terms of structural similarity to fluorescent molecules known to accumulate in Escherichia coli. Results: We reviewed in detail data from 54 antibiotics and 36 bacterial species. Persistence varies widely as a function of the type of antibiotic (membrane-active antibiotics admit the fewest), the nature of the growth phase and medium (persistence is less common in exponential phase and rich media), and the Gram staining of the target organism (persistence is more common in Gram positives). Some antibiotics bear strong structural similarity to fluorophores known to be taken up by E. coli, potentially allowing competitive assays. Some antibiotics also, paradoxically, seem to allow more persisters at higher antibiotic concentrations. Conclusions: We consolidated an actionable knowledge base to support a rational development of antipersister antimicrobials. Persistence is seen as a step on the pathway to antimicrobial resistance, and we found no organisms that failed to exhibit it. Novel antibiotics need to have antipersister activity. Discovery strategies should include persister-specific approaches that could find antibiotics that preferably target the membrane structure and permeability of slow-growing cells.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Munther DS, Carter MQ, Aldric CV, Ivanek R, Brandl MT. Formation of Escherichia coli O157:H7 Persister Cells in the Lettuce Phyllosphere and Application of Differential Equation Models To Predict Their Prevalence on Lettuce Plants in the Field. Appl Environ Microbiol 2020; 86:e01602-19. [PMID: 31704677 PMCID: PMC6952222 DOI: 10.1128/aem.01602-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 (EcO157) infections have been recurrently associated with produce. The physiological state of EcO157 cells surviving the many stresses encountered on plants is poorly understood. EcO157 populations on plants in the field generally follow a biphasic decay in which small subpopulations survive over longer periods of time. We hypothesized that these subpopulations include persister cells, known as cells in a transient dormant state that arise through phenotypic variation in a clonal population. Using three experimental regimes (with growing, stationary at carrying capacity, and decaying populations), we measured the persister cell fractions in culturable EcO157 populations after inoculation onto lettuce plants in the laboratory. The greatest average persister cell fractions on the leaves within each regime were 0.015, 0.095, and 0.221%, respectively. The declining EcO157 populations on plants incubated under dry conditions showed the largest increase in the persister fraction (46.9-fold). Differential equation models were built to describe the average temporal dynamics of EcO157 normal and persister cell populations after inoculation onto plants maintained under low relative humidity, resulting in switch rates from a normal cell to a persister cell of 7.7 × 10-6 to 2.8 × 10-5 h-1 Applying our model equations from the decay regime, we estimated model parameters for four published field trials of EcO157 survival on lettuce and obtained switch rates similar to those obtained in our study. Hence, our model has relevance to the survival of this human pathogen on lettuce plants in the field. Given the low metabolic state of persister cells, which may protect them from sanitization treatments, these cells are important to consider in the microbial decontamination of produce.IMPORTANCE Despite causing outbreaks of foodborne illness linked to lettuce consumption, E. coli O157:H7 (EcO157) declines rapidly when applied onto plants in the field, and few cells survive over prolonged periods of time. We hypothesized that these cells are persisters, which are in a dormant state and which arise naturally in bacterial populations. When lettuce plants were inoculated with EcO157 in the laboratory, the greatest persister fraction in the population was observed during population decline on dry leaf surfaces. Using mathematical modeling, we calculated the switch rate from an EcO157 normal to persister cell on dry lettuce plants based on our laboratory data. The model was applied to published studies in which lettuce was inoculated with EcO157 in the field, and switch rates similar to those obtained in our study were obtained. Our results contribute important new knowledge about the physiology of this virulent pathogen on plants to be considered to enhance produce safety.
Collapse
Affiliation(s)
- Daniel S Munther
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Michelle Q Carter
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Claude V Aldric
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| |
Collapse
|