1
|
Hajar-Azhari S, Mohd Roby BH, Jemain SN, Meor Hussin AS. Sourdough powder: physicochemical, microbiological properties and shelf-life stability in different package type. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1701-1710. [PMID: 39049918 PMCID: PMC11263515 DOI: 10.1007/s13197-024-05941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 07/27/2024]
Abstract
This study aims to optimize the culture condition of semi-liquid sourdough using Kombucha as a starter culture and to evaluate the physicochemical properties, microbial viability and recovering ability of sourdough powder when packaged in different types of packaging for 120 days. Optimal maturation time (103.47 h) and maximum leavening rate (1.27 mL/h) of sourdough were achieved at an incubation temperature of 34 °C and interval refreshment time at 7 h. The optimized culture was spray-dried using 3% Arabic gum (w/v) as a carrier agent yielding 35.86% powder with acceptable viability of 8.71 log CFU/g lactic acid bacteria and 9.03 CFU/g yeast. The sourdough powder was packed in four packaging (LDPE, vacuumed LDPE, aluminum foil laminated pouch and vacuumed aluminum foil laminated pouch) and exhibited comparable physicochemical properties during 120 days of storage. The viability of both lactic acid bacteria and yeast count in sourdough powder when packed in vacuumed aluminum foil laminated pouch showed higher stability for 90 days (6.18 log CFU/g and 6.82 log CFU/g) but reduced to below detection limit after 120 days (5.54 and 5.94 log CFU/g). This suggested that Kombucha sourdough powder packed in vacuumed aluminum laminated pouch could be stored for up to 90 days.
Collapse
Affiliation(s)
- Siti Hajar-Azhari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| | - Bizura Hasida Mohd Roby
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| | - Siti Noorafiqah Jemain
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| |
Collapse
|
2
|
Santos JG, de Souza EL, de Souza Couto MV, Rodrigues TZ, de Medeiros ARS, de Magalhães Cordeiro AMT, Lima MDS, de Oliveira MEG, da Costa Lima M, de Araújo NPR, Gonçalves ICD, Garcia EF. Exploring the Effects of Freeze-Dried Sourdoughs with Lactiplantibacillus pentosus 129 and Limosilactobacillus fermentum 139 on the Quality of Long-Fermentation Bread. Microorganisms 2024; 12:1199. [PMID: 38930581 PMCID: PMC11205311 DOI: 10.3390/microorganisms12061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sourdough production is a complex fermentation process. Natural sourdough fermentation without standardization causes great variability in microbial communities and derived products. Starter cultures have emerged as alternatives to natural fermentation processes, which could improve bakery quality and produce bioactive compounds. This study aimed to evaluate the impacts of freeze-drying on the production and viability of sourdoughs with Lactiplantibacillus pentosus 129 (Lp) and Limosilactobacillus fermentum 139 (Lf), as well as their effects on the quality of long-fermentation bread. These strains were selected based on their better performance considering acidification and exopolysaccharide production capacity. Sourdough with Lp and Lf were propagated until the 10th day, when physicochemical and microbiological parameters were determined. The produced sourdoughs were freeze-dried, and bread samples were produced. The freeze-drying process resulted in high survival rates and few impacts on the metabolic activity of Lp and Lf until 60 days of storage. Incorporating Lp and Lf improved the microbiological and physicochemical properties of sourdough and long-fermentation breads. Tested freeze-dried sourdoughs led to reduced bread aging (higher specific volume and decreased starch retrogradation) and increased digestibility. The results show the potential of the freeze-dried sourdoughs produced with Lp and Lf as innovative strategies for standardizing production protocols for the bakery industry, especially for producing long-term fermentation bread.
Collapse
Affiliation(s)
- Joanderson Gama Santos
- Graduate Program in Agro-Food Technology, Federal University of Paraíba, Bananeiras 58220-000, PB, Brazil; (J.G.S.); (A.R.S.d.M.)
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Marcus Vinícius de Souza Couto
- Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.V.d.S.C.); (T.Z.R.)
| | - Tatiana Zanella Rodrigues
- Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.V.d.S.C.); (T.Z.R.)
| | - Ana Regina Simplício de Medeiros
- Graduate Program in Agro-Food Technology, Federal University of Paraíba, Bananeiras 58220-000, PB, Brazil; (J.G.S.); (A.R.S.d.M.)
| | | | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina 56302-100, PE, Brazil;
| | | | - Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | | | | | - Estefânia Fernandes Garcia
- Department of Gastronomy, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (N.P.R.d.A.); (I.C.D.G.); (E.F.G.)
| |
Collapse
|
3
|
Alkay Z, Falah F, Cankurt H, Dertli E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024; 13:1732. [PMID: 38890959 PMCID: PMC11172170 DOI: 10.3390/foods13111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Sourdough fermentation is one of the oldest traditional methods in food technology and occurs as a result of fermentation of flour prepared from grains. The nutritional role of sourdough is related to the final composition of fermented foods prepared through sourdough fermentation, and recently, sourdough has become an important application to improve nutrition characteristics of bread. Thanks to lactic acid bacteria (LAB) presented in sourdough microflora and metabolites partially produced by yeasts, technological and important nutritional features of the bread improve and an increase in shelf life is achieved. In addition, sourdough bread has a low glycemic index value, high protein digestibility, high mineral and antioxidant content, and improved dietary fiber composition, making it more attractive for human nutrition compared to regular bread. When the sourdough process is applied, the chemical and physical properties of fibers vary according to the degree of fermentation, revealing the physiological importance of dietary fiber and its importance to humans' large intestine microbiota. Therefore, taking these approach frameworks into consideration, this review highlights the benefits of sourdough fermentation in increasing nutrient availability and contributing positively to support human health.
Collapse
Affiliation(s)
- Zuhal Alkay
- Food Engineering Department, Faculty of Engineering, Necmettin Erbakan University, Konya 42010, Türkiye;
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Hasan Cankurt
- Food Technology Department, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38000, Türkiye;
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul 34210, Türkiye
| |
Collapse
|
4
|
Wang Y, Quan S, Xia Y, Wu Z, Zhang W. Exploring the regulated effects of solid-state fortified Jiuqu and liquid-state fortified agent on Chinese Baijiu brewing. Food Res Int 2024; 179:114024. [PMID: 38342544 DOI: 10.1016/j.foodres.2024.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Zaopei is the direct source of Chinese liquor (Baijiu). Adding functional strains to Zaopei is a potential strategy to regulate Baijiu brewing, mainly including the two ways of solid-state fortified Jiuqu (SFJ) and liquid-state fortified agent (LFA). Here, to explore their regulated details, the response patterns of Zaopei microecosystem and the changes in the product features were comprehensively investigated. The results showed that SFJ more positively changed the physicochemical properties of Zaopei and improved its ester content, from 978.57 mg/kg to 1078.63 mg/kg over the fermentation of 30 days, while LFA decreased the content of esters, alcohols, and acids. Microbial analysis revealed that SFJ significantly increased Saccharomycopsis and Aspergillus from the start of fermentation and induced a positive interaction cluster driven by the added functional Paenibacillus, while LFA exhibited a community structure near that of the original microecosystem and led to a simpler network with the reduced microbial nodes and correlations. Metabolism analysis found that both SFJ and LFA weakened the flavor-producing metabolism by suppressing some key enzyme pathways, such as EC 3.2.1.51, EC 4.2.1.47, EC 1.1.1.27, EC 1.1.1.22, EC 1.5.1.10, EC 1.14.11.12. As a result, SFJ improved the raw liquor yield by 28.5 % and endowed the final product with a more fragrant aroma, mainly through ethyl (E)-cinnamate, ethyl isovalerate, ethyl phenacetate with the higher odor activity values, while LFA promoted the yield by 13.2 % and resulted in a purer and less intense aroma through the aroma-active β-damascenone, ethyl heptoate, ethyl phenacetate. These results facilitated the regulated mechanism of SFJ and LFA on Baijiu brewing and indicated that the used functional strains in this study could be applicated in SFJ way for the further industrial-scale application.
Collapse
Affiliation(s)
- Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shikai Quan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China.
| |
Collapse
|
5
|
Farajinejad Z, Mohtarami F, Pirouzifard M, Amiri S, Hamishehkar H. In situ produced exopolysaccharides by Bacillus coagulansIBRC-M 10807 and its effects on properties of whole wheat sourdough. Food Sci Nutr 2023; 11:7000-7012. [PMID: 37970414 PMCID: PMC10630829 DOI: 10.1002/fsn3.3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to investigate in situ exopolysaccharides (EPSs) production by Bacillus coagulans IBRC-M 10807 under different fermentation conditions to improve the technical-functional properties of whole wheat flour sourdough and obtain high-quality products. For this purpose, the effectiveness of four efficient factors including B. coagulans (8 Log CFU/g), FOS (0%, 2.5%, and 5% based on flour weight), fermentation temperature (30, 35, and 40°C), and fermentation time (12, 18, and 24 h) was investigated on the production of functional sourdough. Our work focused on optimizing probiotic sourdough by investigating probiotic viability, pH, total titratable acidity, antioxidant properties, and EPS measurement. The first optimal formulation for maximized production of the in situ EPSs by the numerical optimization included FOS 0%, B. coagulans IBRC-M 10807 8 Log CFU/g, fermentation temperature of 30°C, and fermentation time of 12 h. In this case, EPSs was 59.28 mg/g and probiotic was 10.99 Log CFU/g. The second optimal formula by considering the highest viability of probiotic together with EPS production was determined as FOS 4.71%, B. coagulans IBRC-M 10807, 8 Log CFU/g, fermentation temperature of 30°C, and fermentation time of 20 h. The predicted amount of the EPSs and probiotic viability via the second formulation were 54.4 mg/g and 11.18 Log CFU/g, respectively. Analyses of optimal sourdough using FTIR, SEM, and DSC revealed that FOS and probiotics significantly reduced the enthalpy of amylopectin retrogradation and delayed it compared to other samples. Therefore, improving the final product's technological capabilities and shelf life can be credited with potential benefits.
Collapse
Affiliation(s)
- Zahra Farajinejad
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Forogh Mohtarami
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Mirkhalil Pirouzifard
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
6
|
Viola E, Buzzanca C, Tinebra I, Settanni L, Farina V, Gaglio R, Di Stefano V. A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods 2023; 12:3743. [PMID: 37893636 PMCID: PMC10606098 DOI: 10.3390/foods12203743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, a main goal of research has been to exploit waste from agribusiness industries as new sources of bioactive components, with a view to establishing a circular economy. Non-compliant avocado fruits, as well as avocado seeds and peels, are examples of promising raw materials due to their high nutritional yield and antioxidant profiles. This study aimed to recycle avocado food waste and by-products through dehydration to produce functional bread. For this purpose, dehydrated avocado was reduced to powder form, and bread was prepared with different percentages of the powder (5% and 10%) and compared with a control bread prepared with only semolina. The avocado pulp and by-products did not alter organoleptically after dehydration, and the milling did not affect the products' color and retained the avocado aroma. The firmness of the breads enriched with avocado powder increased due to the additional fat from the avocado, and alveolation decreased. The total phenolic content of the fortified breads was in the range of 2.408-2.656 mg GAE/g, and the antiradical activity was in the range of 35.75-38.235 mmol TEAC/100 g (p < 0.0001), depending on the percentage of fortification.
Collapse
Affiliation(s)
- Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (C.B.); (V.D.S.)
| | - Ilenia Tinebra
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Vittorio Farina
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
- Centre for Sustainability and Ecological Transition, University of Palermo, Piazza Marina, 90133 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (C.B.); (V.D.S.)
| |
Collapse
|
7
|
Guan T, Wu X, Hou R, Tian L, Huang Q, Zhao F, Liu Y, Jiao S, Xiang S, Zhang J, Li D, Luo J, Jin Z, He Z. Application of Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis for Nongxiangxing baijiu fermentation: Improves the microbial communities and flavor of upper fermented grain. Food Res Int 2023; 169:112885. [PMID: 37254333 DOI: 10.1016/j.foodres.2023.112885] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Ethyl hexanoate and ethyl butyrate are essential to the flavor compounds in Nongxiangxing baijiu, but low levels of these two esters in upper fermented grains (FG) decreases the quality of upper distilled baijiu, representing the main challenge in Nongxiangxing baijiu production. This paper enhanced fermentation by inoculating functional Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis strains into upper FG. The results showed that the ethyl butyrate content in the upper FG increased significantly and the content of ethyl hexanoate did improve from the results of many determinations. High-throughput sequencing indicated that the dominant phyla in the FG were Firmicutes, Actinobacteriota, Proteobacteria, Ascomycota, and Basidiomycota. The canonical correspondence analysis (CCA) and person correlation network revealed the relationship between the microbial community, physicochemical environment, and flavor compounds. The temperature, oxygen, and acidity were closely related to the microbial community, while most flavor compounds were positively correlated with Caldicoprobacter, Caproiciproducens, Delftia, Hydrogenispora, Thermoactinomyces, Issatchenkia Bacillus, and Aspergillus. These results helped improve the quality of Nongxiangxing baijiu.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China.
| | - Xiaotian Wu
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Rui Hou
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Lei Tian
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Qiao Huang
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Fan Zhao
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Ying Liu
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Shirong Jiao
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | | | - Jiaxu Zhang
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Dong Li
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Jing Luo
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Zhengyu Jin
- School of Food and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zongjun He
- Sichuan Tujiu Liquor Co., Ltd, Chengdu 637919, China
| |
Collapse
|
8
|
Wei G, Chitrakar B, Wu J, Sang Y. Exploration of microbial profile of traditional starters and its influence on aroma profile and quality of Chinese steamed bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2522-2531. [PMID: 36600672 DOI: 10.1002/jsfa.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chinese steamed bread (CSB) is a popular staple food in China with traditional ethnic characteristics. CSB with traditional starters has good flavor and texture but is unstable and requires a long preparation time. Therefore, it is necessary to analyze the traditional starters (ST) and their influence on the flavor and quality of steamed bread to meet people's requirements as a staple food. RESULTS The count of yeast, lactic acid bacteria and total microbial population significantly varied in different traditional starters; Saccharomyces and Lactobacillus were the predominant genera. Among the tested samples, fungi were found in ST from Shijiazhuang (SJ), Handan (HD) and Langfang (LF), while bacteria were found in ST from Tangshan (TS) and SJ at sub-predominant levels. In terms of the bread quality, the highest specific volume and porosity were in XT-CSB (Xingtai); the highest height/diameter ratio was in SJ-CSB; and the highest sensory score was in TS-CSB. A total of 26 aroma compounds (VIP > 1; variable importance for predictive components) were identified to discriminate CSB fermented with different starters, which were separated by stepwise canonical discriminant analysis using two functions. The correlation analysis among microbiota, aroma compounds and bread quality showed a higher contribution of bacteria than of fungi. CONCLUSION Differences in microbial profiles caused different aroma profiles and quality of CSB; and the CSB fermented with traditional starters were sufficiently separated by stepwise canonical discriminant analysis based on aroma compounds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangna Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Wang Z, Lao J, Kang X, Xie Z, He W, Liu X, Zhong C, Zhang S, Jin J. Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system. Front Nutr 2023; 10:1093761. [PMID: 36776612 PMCID: PMC9908587 DOI: 10.3389/fnut.2023.1093761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Polygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products. Methods In this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis. Results A total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase. Discussion Aerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products.
Collapse
Affiliation(s)
- ZiLing Wang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, China
| | - XingYi Kang
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, Hunan, China
| | - ZhenNi Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Wei He
- Resgreen Group International Inc., Changsha, China
| | - XiaoLiu Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - ShuiHan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Jian Jin,
| |
Collapse
|
10
|
Aiello D, Barbera M, Bongiorno D, Cammarata M, Censi V, Indelicato S, Mazzotti F, Napoli A, Piazzese D, Saiano F. Edible Insects an Alternative Nutritional Source of Bioactive Compounds: A Review. Molecules 2023; 28:molecules28020699. [PMID: 36677756 PMCID: PMC9861065 DOI: 10.3390/molecules28020699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Edible insects have the potential to become one of the major future foods. In fact, they can be considered cheap, highly nutritious, and healthy food sources. International agencies, such as the Food and Agriculture Organization (FAO), have focused their attention on the consumption of edible insects, in particular, regarding their nutritional value and possible biological, toxicological, and allergenic risks, wishing the development of analytical methods to verify the authenticity, quality, and safety of insect-based products. Edible insects are rich in proteins, fats, fiber, vitamins, and minerals but also seem to contain large amounts of polyphenols able to have a key role in specific bioactivities. Therefore, this review is an overview of the potential of edible insects as a source of bioactive compounds, such as polyphenols, that can be a function of diet but also related to insect chemical defense. Currently, insect phenolic compounds have mostly been assayed for their antioxidant bioactivity; however, they also exert other activities, such as anti-inflammatory and anticancer activity, antityrosinase, antigenotoxic, and pancreatic lipase inhibitory activities.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marcella Barbera
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Valentina Censi
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
- Correspondence: (A.N.); (D.P.)
| | - Daniela Piazzese
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
- Correspondence: (A.N.); (D.P.)
| | - Filippo Saiano
- Department Agricultural Food and Forestry Sciences, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
11
|
Hassan SA, Abbas M, Zia S, Maan AA, Khan MKI, Hassoun A, Shehzad A, Gattin R, Aadil RM. An appealing review of industrial and nutraceutical applications of pistachio waste. Crit Rev Food Sci Nutr 2022; 64:3103-3121. [PMID: 36200872 DOI: 10.1080/10408398.2022.2130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pistachio (Pistacia vera L.) is consumed in almost every part of the world enclosed in shells that are thrown out in baskets. Similarly, hulls separated from pistachio are discarded as waste in food processing industries. These waste materials contain functional constituents having immense industrial and nutraceutical applications. This review article summarizes the scientific investigations regarding the functional constituents and bioactive compounds in pistachio shells (PSs) and pistachio hulls (PHs). It also highlights the nutraceutical potential exhibited by functionally active compounds as well as their potential applications in various industries including nutraceutical, medicinal, and feed industries together with biosynthetic development of useful products and wastewater treatment. Pistachio waste (PW) comprising PS and PH is a rich source of various bioactive compounds. PS is full of lignin, cellulose, and hemicellulose. PH is an excellent source of carbohydrates (80.64 ± 0.98%) (including glucose, galactose, rhamnose, arabinose, xylose, mannose, galacturonic acid) as well as ash (6.32 ± 0.26%) and proteins (1.80 ± 0.28%) with small amounts of fats (0.04 ± 0.005%). Owing to its composition, PW can be beneficial in many nutraceuticals, including antioxidation, cytoprotection, anti-obesity, anti-diabetic, anti-melanogenesis, neuroprotection, anti-cancer, anti-mutagenesis, anti-inflammation, and anti-microbial. The waste materials have vast applications in the food industry, such as bio-preservation of oils and meat products, prevention of enzymatic browning in fruits, vegetables, and mushrooms, development of functional cereal and dairy products, production of food enzymes, emulsions, and manufacturing of biodegradable films for food packaging. The use of these waste products to develop and design novel functional foods with improved quality is important for both food industries and food sustainability.
Collapse
Affiliation(s)
- Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mueen Abbas
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sania Zia
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Aamir Shehzad
- UniLaSalle, Univ. Artois, EA7519 - Transformations & Agro-ressources, Normandie Université, Mont-Saint-Aignan, France
| | - Richard Gattin
- UniLaSalle, Univ. Artois, EA7519 - Transformations & Agro-ressources, Normandie Université, Mont-Saint-Aignan, France
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
12
|
Zhou X, Duan M, Gao S, Wang T, Wang Y, Wang X, Zhou Y. A strategy for reducing acrylamide content in wheat bread by combining acidification rate and prerequisite substance content of Lactobacillus and Saccharomyces cerevisiae. Curr Res Food Sci 2022; 5:1054-1060. [PMID: 35789803 PMCID: PMC9249569 DOI: 10.1016/j.crfs.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
This study mainly focused on a strategy for reducing acrylamide(AM) content in wheat breads by combining Lactobacilli and Saccharomyces cerevisiae in sourdough, in comparison with natural fermentation. The results showed that acrylamide levels in breads using sourdough were much lower (102.02-129.37 μg/kg) than control group (204.79 μg/kg). The pH value of sourdough directly influenced the formation of acrylamide in breads (P < 0.01). Furthermore, significant (P < 0.05) correlations were also found between protein and acrylamide contents. There no significant correlations were observed between acrylamide and reducing sugar contents. According to the different effects of strains, it could be concluded that the acrylamide reducing potential of strains was strain-specific, with Pediococcus pentosaceus being the most effective. This suggests that sourdough fermentation with appropriate strains can be used as an advantageous technology to reduce the acrylamide content of wheat breads.
Collapse
Affiliation(s)
- Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 200235, China
- University Think Tank of Shanghai Municipality, Institute of Beautiful China and Ecological Civilization, Shanghai, 200235, China
| | - Mengjie Duan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 200235, China
| | - Shijie Gao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 200235, China
| | - Tian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 200235, China
| | - Yibao Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 200235, China
| | - Xinyi Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 200235, China
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 200235, China
| |
Collapse
|
13
|
Boyaci Gunduz CP, Agirman B, Gaglio R, Franciosi E, Francesca N, Settanni L, Erten H. Evaluation of the variations in chemical and microbiological properties of the sourdoughs produced with selected lactic acid bacteria strains during fermentation. Food Chem X 2022; 14:100357. [PMID: 35693452 PMCID: PMC9178471 DOI: 10.1016/j.fochx.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Chemical, microbiological and VOCs profile showed the relevance of starter addition. MiSeq Illumina confirmed that Lactobacillus spp. constituted the major LAB group. Fructilactobacillus sanfranciscensis was the most isolated LAB species. Rapid acidifying LAB strains should be preferred for sourdough production. Number of VOCs increased in sourdoughs produced with starter culture.
This research aimed to analyze variations in chemical properties, microbiological characteristics and generated volatile organic compounds (VOCs) profile during sourdough fermentation. Sourdoughs were collected from different cities in Turkey at two different times and lactic acid bacteria (LAB) in the samples were identified with culture-independent and culture-dependent molecular methods. According to culture-dependent methodology, thirteen LAB species were identified. Lactobacillus spp. were identified as the major group according to MiSeq Illumina analysis. Technological potential of commonly isolated LAB species was evaluated. Due to high frequency of isolation, Fructilactobacillus sanfranciscensis and Lactiplantibacillus plantarum strains were better investigated for their technological traits useful in sourdough production. Experimental sourdoughs were produced with mono- and dual-culture of the selected strains and chemical properties and microbiological characteristics, as well as VOCs profile of the sourdoughs, were subjected to multivariate analysis which showed the relevance of added starter, in terms of acidification and VOCs profile.
Collapse
|
14
|
Cirlincione F, Venturella G, Gargano ML, Ferraro V, Gaglio R, Francesca N, Rizzo BA, Russo G, Moschetti G, Settanni L, Mirabile G. Functional bread supplemented with Pleurotus eryngii powder: A potential new food for human health. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2021.100449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Settanni L, Busetta G, Puccio V, Licitra G, Franciosi E, Botta L, Di Gerlando R, Todaro M, Gaglio R. In-Depth Investigation of the Safety of Wooden Shelves Used for Traditional Cheese Ripening. Appl Environ Microbiol 2021; 87:e0152421. [PMID: 34550766 PMCID: PMC8579974 DOI: 10.1128/aem.01524-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
The main goal of this research was to characterize the bacterial diversity of the wooden boards used for aging traditional Sicilian cheeses and to evaluate whether pathogenic bacteria are associated with these surfaces. Eighteen cheese dairy factories producing three traditional cheese typologies (PDO Pecorino Siciliano, PDO Piacentinu Ennese, and Caciocavallo Palermitano) were selected within the region of Sicily. The wooden shelf surfaces were sampled by a destructive method to detach wood splinters as well as by a nondestructive brushing to collect microbial cells. Scanning electron microscopy showed the presence of almost continuous bacterial formations on the majority of the shelves analyzed. Yeasts and fungal hyphae were also visualized, indicating the complexity of the plank communities. The amplicon library of the 16S rRNA gene V3-V4 region was paired-end sequenced using the Illumina MiSeq system, allowing the identification of 14 phyla, 32 classes, 52 orders, 93 families, and 137 genera. Staphylococcus equorum was identified from all wooden surfaces, with a maximum abundance of 64.75%. Among cheese-surface-ripening bacteria, Brevibacterium and Corynebacterium were detected in almost all samples. Several halophilic (Halomonas, Tetragenococcus halophilus, Chromohalobacter, Salimicrobium, Marinococcus, Salegentibacter, Haererehalobacter, Marinobacter, and Idiomarinaceae) and moderately halophilic (Salinicoccus, Psychrobacter, and Salinisphaera) bacteria were frequently identified. Lactic acid bacteria (LAB) were present at low percentages in the genera Leuconostoc, Lactococcus, Lactobacillus, Pediococcus, and Streptococcus. The levels of viable microorganisms on the wooden shelves ranged between 2.4 and 7.8 log CFU/cm2. In some cases, LAB were counted at very high levels (8.2 log CFU/cm2). Members of the Enterobacteriaceae family were detected in a viable state for only six samples. Coagulase-positive staphylococci, Salmonella spp., and Listeria monocytogenes were not detected. Seventy-five strains belonged to the genera Leuconostoc, Lactococcus, Pediococcus, Enterococcus, Lactobacillus, and Weissella. IMPORTANCE This study provides evidence for the lack of pathogenic bacteria on the wooden shelves used to ripen internal bacterially ripened semihard and hard cheeses produced in Sicily. These three cheeses are not inoculated on their surfaces, and surface ripening is not considered to occur or, at least, does not occur at the same extent as surface-inoculated smear cheeses. Several bacterial groups identified from the wooden shelves are typically associated with smear cheeses, strongly suggesting that PDO Pecorino Siciliano, PDO Piacentinu Ennese, and Caciocavallo Palermitano cheese rind contributes to their final organoleptic profiles.
Collapse
Affiliation(s)
- Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Valeria Puccio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Giuseppe Licitra
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Catania, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria, UdR INSTM di Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Massimo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| |
Collapse
|
16
|
Guardianelli L, Puppo MC, Salinas MV. Influence of pistachio by-product from edible oil industry on rheological, hydration, and thermal properties of wheat dough. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
18
|
Sourdough “ciabatta” bread enriched with powdered insects: Physicochemical, microbiological, and simulated intestinal digesta functional properties. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Correlation between the quality and microbial community of natural-type and artificial-type Yongchuan Douchi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Ruisi P, Ingraffia R, Urso V, Giambalvo D, Alfonzo A, Corona O, Settanni L, Frenda AS. Influence of grain quality, semolinas and baker's yeast on bread made from old landraces and modern genotypes of Sicilian durum wheat. Food Res Int 2021; 140:110029. [PMID: 33648257 DOI: 10.1016/j.foodres.2020.110029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/17/2022]
Abstract
Several studies showed that products made with ancient wheat genotypes have beneficial health properties compared to those obtained with modern wheat varieties, even though the mechanisms responsible for the positive effects are not clear. Ancient durum wheat genotypes are being currently used for the production of pasta, bread and other typical bakery products but the consumption is strictly local. In this work 15 genotypes of Triticum turgidum subsp. durum, including 10 ancient and 5 modern, were characterized for their technological traits through the determination of different parameters: protein content, dry gluten, gluten index, yellow index, ash, P/L, W and G. In addition, the baking aptitude of all genotypes was evaluated. All semolinas were subjected to leavening by commercial baker's yeast and the experimental breads were subjected to the qualitative characterization (weight loss, height, firmness, colour, volatile organic compounds, image and sensory analysis). The results obtained showed that protein content of grains and semolinas was higher in ancient rather than modern genotypes. Dry gluten ranged from 6.7% of the modern variety Simeto to 13.6% of the ancient genotype Scorsonera. Great differences were found for the yellow index which reached the highest value in Saragolla variety. The P/L and W ratios were significantly higher for the modern genotypes. On average, weight loss was about 14 g, while bread height varied significantly between the trials. Bread consistency varied between 12.6 and 31.3 N. Differences were observed for the yellow of the crumb (higher for modern genotypes) and for the redness of the crust (higher for ancient genotypes). The sensory evaluation displayed a high variability among the breads from the 10 ancient genotypes, while the control breads received scores closed to those of the modern genotypes. This study revealed that the modern durum wheat varieties showed a certain uniformity of behaviour, while the ancient genotypes exhibited a great variability of the final attributes of breads.
Collapse
Affiliation(s)
- Paolo Ruisi
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Rosolino Ingraffia
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Valeria Urso
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Dario Giambalvo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Antonio Alfonzo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.
| | - Onofrio Corona
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Alfonso S Frenda
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| |
Collapse
|
21
|
Guan T, Yang H, Ou M, Zhang J. Storage period affecting dynamic succession of microbiota and quality changes of strong-flavor Baijiu Daqu. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Arora K, Ameur H, Polo A, Di Cagno R, Rizzello CG, Gobbetti M. Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Teleky BE, Martău GA, Vodnar DC. Physicochemical Effects of Lactobacillus plantarum and Lactobacillus casei Cocultures on Soy-Wheat Flour Dough Fermentation. Foods 2020; 9:E1894. [PMID: 33353037 PMCID: PMC7766497 DOI: 10.3390/foods9121894] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
In contemporary food production, an important role is given to the increase in the nutritional quality of foodstuff. In the bakery industry, one of the main cereals used is wheat flour (WF), which creates bread with proper sensory evaluation but is nutritionally poor. Soy-flour (SF) has increased nutrient content, and its consumption is recommended due to several health benefits. Dough fermentation with lactic acid bacteria (LAB) increases bread shelf life, improves flavor, and its nutritional quality, mostly due to its high organic acid production capability. In the present study, the addition of SF to WF, through fermentation with the cocultures of Lactobacillus plantarum and Lactobacillus casei was analyzed. Three different batches were performed by using WF supplemented with SF, as follows: batch A consisting of 90% WF and 10% SF; batch B-95% WF and 5% SF; batch C-100% WF. The fermentation with these two LABs presented several positive effects, which, together with increased SF content, improved the dough's rheological and physicochemical characteristics. The dynamic rheological analysis exhibited a more stable elastic-like behavior in doughs supplemented with SF (G' 4936.2 ± 12.7, and G″ 2338.4 ± 9.1). Organic acid production changes were the most significant, especially for the lactic, citric, and tartaric content.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
24
|
A Species-Specific qPCR Method for Enumeration of Lactobacillus sanfranciscensis, Lactobacillus brevis, and Lactobacillus curvatus During Cocultivation in Sourdough. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01920-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Sidari R, Martorana A, Zappia C, Mincione A, Giuffrè AM. Persistence and Effect of a Multistrain Starter Culture on Antioxidant and Rheological Properties of Novel Wheat Sourdoughs and Bread. Foods 2020; 9:E1258. [PMID: 32911696 PMCID: PMC7555968 DOI: 10.3390/foods9091258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
Food consumers make decisions primarily on the basis of a product's nutritional, functional, and sensorial aspects. In this context, this study evaluated the persistence in sourdough of a multistrain starter culture from laboratory to bakery plant production and the effect of the starter on antioxidant and rheological properties of sourdoughs and derived bread. Lactobacillus sanfranciscensis B450, Leuconostoc citreum B435, and Candida milleri L999 were used as a multispecies starter culture to produce a sourdough subsequently used to modify two traditional sourdoughs to make novel bread with improved health and rheological properties. Both these novel bakery sourdoughs showed the persistence of L. sanfranciscensis B450 and C. milleri L999, and showed a significantly different lactic acid bacteria (LAB) concentration from the traditional sourdoughs. The novel sourdough PF7 M had a higher phenolic content (170% increase) and DPPH (8% increase) than the traditional bakery sourdough PF7 F. The novel sourdough PF9 M exhibited an improvement in textural parameters. Further research would be useful on the bioavailability of bio-active compounds to obtain bread with improved characteristics.
Collapse
Affiliation(s)
- Rossana Sidari
- Department of AGRARIA, Mediterranea University of Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy; (A.M.); (C.Z.); (A.M.); (A.M.G.)
| | | | | | | | | |
Collapse
|
26
|
Păcularu-Burada B, Georgescu LA, Vasile MA, Rocha JM, Bahrim GE. Selection of Wild Lactic Acid Bacteria Strains as Promoters of Postbiotics in Gluten-Free Sourdoughs. Microorganisms 2020; 8:E643. [PMID: 32354104 PMCID: PMC7284720 DOI: 10.3390/microorganisms8050643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of inflammatory responses in humans is frequently associated with food intolerances and is likely to give rise to irritable bowel disease. The use of conventional or unconventional flours to produce gluten-free baking doughs brings important technological and nutritional challenges, and the use of the sourdough biotechnology has the potential to overcome such limitations. In addition, the typical metabolic transformations carried out by Lactic Acid Bacteria (LAB) can become an important biotechnological process for the nutritional fortification and functionalization of sourdoughs due to the resulting postbiotics. In such a context, this research work aimed at isolating and selecting new LAB strains that resort to a wide range of natural environments and food matrices to be ultimately employed as starter cultures in gluten-free sourdough fermentations. Nineteen LAB strains belonging to the genera of Lactobacillus, Leuconostoc, Pediococcus, and Streptococcus were isolated, and the selection criteria encompassed their acidification capacity in fermentations carried out on chickpea, quinoa, and buckwheat flour extracts; the capacity to produce exopolysaccharides (EPS); and the antimicrobial activity against food spoilage molds and bacteria. Moreover, the stability of the LAB metabolites after the fermentation of the gluten-free flour extracts submitted to thermal and acidic treatments was also assessed.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Luminița Anca Georgescu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Mihaela Aida Vasile
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| | - Gabriela-Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| |
Collapse
|
27
|
Evaluation of the Fermentation Dynamics of Commercial Baker’s Yeast in Presence of Pistachio Powder to Produce Lysine-Enriched Breads. FERMENTATION 2019. [DOI: 10.3390/fermentation6010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The present work was carried out to evaluate the microbiological, physicochemical, and sensory characteristics of fortified pistachio breads. Pistachio powder (5% w/w) was added to flour or semolina and fermented by a commercial baker’s yeast (Saccharomyces cerevisiae). Pistachio powder did not influence the biological leavening of the doughs. The kinetics of pH and total titratable acidity (TTA) during dough fermentation showed that the leavening process occurred similarly for all trials. The concentration of yeasts increased during fermentation and reached levels of 108 CFU/g after 2 h. Pistachio powder decreased the height and softness of the final breads and increased cell density of the central slices. The amount of lysine after baking increased in pistachio breads and this effect was stronger for semolina rather than flour trials. Sensory evaluation indicated that fortified breads processed from semolina were those more appreciated by the judges. This work clearly indicated that the addition of pistachio powder in bread production represents a promising strategy to increase the availability of lysine in cereal-based fermented products.
Collapse
|
28
|
Settanni L, Barbaccia P, Bonanno A, Ponte M, Di Gerlando R, Franciosi E, Di Grigoli A, Gaglio R. Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiol 2019; 87:103385. [PMID: 31948626 DOI: 10.1016/j.fm.2019.103385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 02/03/2023]
Abstract
The present work was carried out to evaluate the microbiological and physicochemical composition of salamis produced with the meat of beef, horse, wild boar and pork. Salami productions occurred under controlled laboratory conditions to exclude butchery environmental contaminations, without the addition of nitrate and nitrite. All trials were monitored during the ripening (13 °C and 90% relative humidity) extended until 45 d. The evolution of physicochemical parameters showed that beef and pork salamis were characterized by a higher content of branched chain fatty acids (FA) and rumenic acid than horse and wild boar salamis, whereas the last two productions showed higher values of secondary lipid oxidation. Plate counts showed that lactic acid bacteria (LAB), yeasts and coagulase-negative staphylococci (CNS) populations dominated the microbial community of all productions with Lactobacillus and Staphylococcus as most frequently isolated bacteria. The microbial diversity evaluated by MiSeq Illumina showed the presence of members of Gammaproteobacteria phylum, Moraxellaceae family, Acinetobacter, Pseudomonas, Carnobacterium and Enterococcus in all salamis. This study showed the natural evolution of indigenous fermented meat starter cultures and confirmed a higher suitability of horse and beef meat for nitrate/nitrite free salami production due to their hygienic quality at 30 d.
Collapse
Affiliation(s)
- Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Pietro Barbaccia
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Adriana Bonanno
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Marialetizia Ponte
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, San Michele All'Adige, Italy
| | - Antonino Di Grigoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy.
| |
Collapse
|