1
|
Zheng H, Li L, Huang C, Liu S, Chen X, Wang X, Hu P. Evaluation of ultrasound-assisted tomato sour soup marination on beef: Insights into physicochemical, sensory, microstructural, and flavour characteristics. ULTRASONICS SONOCHEMISTRY 2024; 110:107028. [PMID: 39167838 PMCID: PMC11381424 DOI: 10.1016/j.ultsonch.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
This study evaluated the quality attributes of tomato sour soup marinade and investigated the effects of ultrasound-assisted marination on the physicochemical properties, microstructure, texture, sensory quality, and flavour profile of beef. The results showed that tomato sour soup significantly increased the marinade absorption rate and improved beef tenderloin's physicochemical properties, texture, and flavour attributes compared to static brine (P < 0.05), with organic acids playing an essential role in the marinade tenderisation process. Compared to static sour soup marination, ultrasound treatment significantly accelerated the marination process, reducing beef's shear force, hardness, and chewiness while increasing its tenderness. Microstructural observations revealed that sour soup marination induced a fragmented and irregular muscle fibre structure. Furthermore, sour soup marination significantly increased the relative concentrations of volatile flavour compounds, including alkanes, organic sulphides, alcohols, aldehydes, and aromatic compounds. Appropriate ultrasound treatment positively affects the texture and flavour characteristics of beef marinated with tomato sour soup, and the optimal approach was 320 W ultrasound treatment for 60 min. Overall, tomato sour soup improved beef's textural and flavour attributes, while ultrasound-assisted marination is an effective processing method to improve the quality of meat products.
Collapse
Affiliation(s)
- Huaisheng Zheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lilang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chaobin Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuhong Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xinghua Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoyu Wang
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Park JM, Moon JW, Zhang BZ, An BK. Antioxidant Activity and Other Characteristics of Lactic Acid Bacteria Isolated from Korean Traditional Sweet Potato Stalk Kimchi. Foods 2024; 13:3261. [PMID: 39456323 PMCID: PMC11507834 DOI: 10.3390/foods13203261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to examine the biological activity and probiotic properties of lactic acid bacteria (LAB) isolated from sweet potato stalk kimchi (SPK). Various LAB and Bacillus spp. are active in the early stages of the fermentation of kimchi made from sweet potato stalk. Four strains of LAB were identified, including SPK2 (Levilactobacillus brevis ATCC 14869), SPK3 (Latilactobacillus sakei NBRC 15893), SPK8 and SPK9 (Leuconostoc mesenteroides subsp. dextranicum NCFB 529). SPK2, SPK3, SPK8, and SPK9 showed 64.64-94.23% bile acid resistance and 78.66-82.61% pH resistance. We identified over 106 CFU/mL after heat treatment at 75 °C. Four strains showed high antimicrobial activity to Escherichia coli and Salmonella Typhimurium with a clear zone of >11 mm. SPK2 had the highest antioxidative potentials, higher than the other three bacteria, with 44.96 μg of gallic acid equivalent/mg and 63.57% DPPH scavenging activity. These results demonstrate that the four strains isolated from sweet potato kimchi stalk show potential as probiotics with excellent antibacterial effects and may be useful in developing health-promoting products.
Collapse
Affiliation(s)
- Jung-Min Park
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Ji-Woon Moon
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Bo-Zheng Zhang
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Byoung-Ki An
- Animal Resources Research Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Kamber A, Bulut Albayrak C, Harsa HS. Studies on the Probiotic, Adhesion, and Induction Properties of Artisanal Lactic Acid Bacteria: to Customize a Gastrointestinal Niche to Trigger Anti-obesity Functions. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10357-6. [PMID: 39382740 DOI: 10.1007/s12602-024-10357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
The primary goals of this work are to explore the potential of probiotic lactic acid bacteria's (LAB) mucin/mucus layer thickening properties and to identify anti-obesity candidate strains that improve appropriate habitat for use with the Akkermansia group population in the future. The HT-29 cell binding, antimicrobial properties, adhesion to the mucin/mucus layer, growth in the presence of mucin, stability during in vitro gastrointestinal (GI) conditions, biofilm formation, and mucin/mucus thickness increment abilities were all assessed for artisanal LAB strains. Sixteen LAB strains out of 40 were chosen for further analysis based on their ability to withstand GI conditions. Thirteen strains remained viable in simulated intestinal fluid, while most showed high viability in gastric juice simulation. Furthermore, 35.9-65.4% of those 16 bacteria adhered to the mucin layer. Besides, different lactate levels were produced, and Streptococcus thermophilus UIN9 exhibited the highest biofilm development. In the HT-29 cell culture, the highest mucin levels were 333.87 µg/mL with O. AK8 at 50 mM lactate, 313.38 µg/mL with Lactobacillus acidophilus NRRL-B 1910 with initial mucin, and 311.41 µg/mL with Lacticaseibacillus casei NRRL-B 441 with initial mucin and 50 mM lactate. Nine LAB strains have been proposed as anti-obesity candidates, with olive isolates of Lactiplantibacillus plantarum being particularly important due to their ability to avoid mucin sugar consumption. Probiotic LAB's attachment to the colonic mucosa and its ability to stimulate HT-29 cells to secrete mucus are critical mechanisms that may support the development of Akkermansia.
Collapse
Affiliation(s)
- A Kamber
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye
| | - C Bulut Albayrak
- Food Engineering Department, Aydın Adnan Menderes University, Engineering Faculty, 09100, Aydın, Türkiye
| | - H S Harsa
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye.
| |
Collapse
|
4
|
Jang HY, Kim MJ, Jeong JY, Hwang IM, Lee JH. Exploring the influence of garlic on microbial diversity and metabolite dynamics during kimchi fermentation. Heliyon 2024; 10:e24919. [PMID: 38312694 PMCID: PMC10835354 DOI: 10.1016/j.heliyon.2024.e24919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Garlic (Allium sativum) is a key ingredient in Korean cuisine, particularly in the preparation of kimchi, contributing to its flavor and taste. Garlic has been a potential resource for lactic acid bacteria (LAB) in kimchi. However, the mechanism by which it influences microbial diversity and metabolite production is unclear. This study investigated the effect of garlic on the bacterial composition of and metabolite changes in kimchi. To achieve this, four separate batches of kimchi were prepared with varying garlic concentrations (w/w): 0 %, 1 %, 2 %, and 4 %, and the bacterial communities and metabolite production were monitored. In the early stages of fermentation, the count of LAB, operational taxonomic units (OTUs), and Shannon index increased linearly with the increase in garlic content. This indicated that garlic is a rich resource and contributes to the diversity of LAB during kimchi fermentation. Compared with the kimchi samples with a lower garlic content, those with a high garlic content (≥2 %) exhibited increased abundance of Lactobacillus and Leuconostoc as well as noticeable differences in functional diversity, including carbohydrate, amino acid, and energy metabolisms. Correlation analysis between sugars, organic acids, and predominant LAB in the garlic-containing kimchi samples suggested that in kimchi samples with high garlic content, LAB played a significant role in the fermentation process by metabolizing sugars and producing organic acids. Overall, this study demonstrated that the addition of garlic has a positive impact on the bacterial diversity and metabolite production during kimchi fermentation, potentially affecting the fermentation process and flavor profile of kimchi.
Collapse
Affiliation(s)
- Ha-Young Jang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Min Ji Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Young Jeong
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Hee Lee
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
5
|
Shi J, Zhang G, Ke W, Pan Y, Hou M, Chang C, Sa D, Lv M, Liu Y, Lu Q. Effect of endogenous sodium and potassium ions in plants on the quality of alfalfa silage and bacterial community stability during fermentation. FRONTIERS IN PLANT SCIENCE 2023; 14:1295114. [PMID: 38205017 PMCID: PMC10777314 DOI: 10.3389/fpls.2023.1295114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
This study investigated the impact of endogenous sodium and potassium ions in plants on the quality of alfalfa silage, as well as the stability of bacterial communities during fermentation. Silage was produced from the fermented alfalfa, and the chemical composition, fermentation characteristics, and microbiome were analyzed to understand their interplay and impact on silage fermentation quality. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1‰ (CK); (b) 1‰-2‰ (LP); (c) 2‰-3‰ (MP); (d) 3‰-4‰ (HP). The results revealed that the pH of silage was negatively correlated with the lactic acid content. With the increase of lactic acid (LA) content increased (26.3-51.0 g/kg DM), the pH value decreased (4.9-5.3). With the increase of salt stress, the content of Na+ in silage increased (2.2-5.4 g/kg DM). The presence of endogenous Na+ and K+ ions in plants significantly affected the quality of alfalfa silage and the dynamics of bacterial communities during fermentation. Increased salt stress led to changes in microbial composition, with Lactococcus and Pantoea showing a gradual increase in abundance, especially under high salt stress. Low pH inhibited the growth of certain bacterial genera, such as Pantoea and Pediococcus. The abundance of Escherichia-Shigella and Comamonas negatively correlated with crude protein (CP) content, while Enterococcus and Lactococcus exhibited a positive correlation. Furthermore, the accumulation of endogenous Na+ in alfalfa under salt stress suppressed bacterial proliferation, thereby reducing protein degradation during fermentation. The pH of the silage was high, and the LA content was also high. Silages from alfalfa under higher salt stress had higher Na+ content. The alpha diversity of bacterial communities in alfalfa silages showed distinct patterns. Desirable genera like Lactococcus and Lactobacillus predominated in silages produced from alfalfa under salt stress, resulting in better fermentation quality.
Collapse
Affiliation(s)
- Jinhong Shi
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Guijie Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wencan Ke
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yongxiang Pan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Chun Chang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Mingju Lv
- Inner Mongolia Agriculture and Animal Husbandry Extension Center, Hohhot, China
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Saeed A, Yasmin A, Baig M, Khan K, Heyat MBB, Akhtar F, Batool Z, Kazmi A, Wahab A, Shahid M, Ahmed MA, Abbas S, Muaad AY, Shahzad A, Ahmad I. Isolation and Characterization of Lactobacillus crispatus, Lactococcus lactis, and Carnobacterium divergens as Potential Probiotic Bacteria from Fermented Black and Green Olives ( Olea europaea): An Exploratory Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8726320. [PMID: 37152587 PMCID: PMC10156456 DOI: 10.1155/2023/8726320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 05/09/2023]
Abstract
Background Table olives are becoming well recognized as a source of probiotic bacteria that might be used to create a health-promoting fermented food product by traditional procedures based on the activities of indigenous microbial consortia present in local environments. Methodology. In the present study, the characterization of probiotic bacteria isolated from mince, chunks, and brine of fermented green and black olives (Olea europaea) was done based on morphological, biochemical, and physiological characteristics. Results Bacterial isolates demonstrated excellent survival abilities at 25, 37, and 45°C and at a variable range of pH. However, the optimum temperature is 37 and the optimum pH is 7 for all three isolates. An antimicrobial susceptibility pattern was found among these isolates through the disc diffusion method. Most of the isolates were susceptible to streptomycin, imipenem, and chloramphenicol, whereas, amoxicillin showed resistance to these isolates, and variable results were recorded for the rest of the antibiotics tested. The growth of the isolates was optimum with the supplementation of 3% NaCl and 0.3% bile salt. The isolated bacteria were able to ferment skimmed milk into yogurt, hence making it capable of producing organic acid. Conclusion Isolates of Lactobacillus crispatus MB417, Lactococcus lactis MB418 from black olives, and Carnobacterium divergens MB421 from green olives were characterized as potential candidates for use as starter cultures to induce fermentation of other probiotic food products.
Collapse
Affiliation(s)
- Ayesha Saeed
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University Rawalpindi, Pakistan
| | - Mehreen Baig
- Surgical Unit II, Foundation University, Islamabad, Pakistan
| | - Khalid Khan
- Foot and Mouth Disease Vaccine Research Centre, Veterinary Research Institute (VRI), Peshawar, Pakistan
| | - Md Belal Bin Heyat
- IOT Research Centre, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Centre for VLSI and Embedded System Technologies, International Institute of Information Technology, Hyderabad, Telangana 500032, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Zahra Batool
- Institute of Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Abeer Kazmi
- Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (UCAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abdul Wahab
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muhammad Shahid
- Brucellosis Section, Veterinary Research Institute (VRI), Peshawar, Pakistan
| | | | - Sidra Abbas
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University Rawalpindi, Pakistan
| | | | - Amir Shahzad
- Nishtar Medical University, Multan, Punjab, Pakistan
| | - Imtiaz Ahmad
- Medical Officer, Regional Health Centre (RHC), Qadirabad, Tehsil Kot Chutta, District Dera Ghazi Khan, Punjab, Pakistan
| |
Collapse
|
7
|
Xing S, Zhang X, Guan H, Li H, Liu W. Predictive model for growth of Leuconostoc mesenteroides in Chinese cabbage juices with different salinities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Park SY, Kang M, Yun SM, Eun JB, Shin BS, Chun HH. Changes and machine learning-based prediction in quality characteristics of sliced Korean cabbage (Brassica rapa L. pekinensis) kimchi: Combined effect of nano-foamed structure film packaging and subcooled storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Yang SY, Yoon KS. Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt. Foods 2022; 11:foods11233799. [PMID: 36496607 PMCID: PMC9740215 DOI: 10.3390/foods11233799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Greek yogurt is a strained yogurt with a high protein content that brings nutritional benefits. To enhance the functional benefits of Greek yogurt, Greek yogurt was prepared with various combinations of probiotic lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus gasseri BNR17, and Lactobacillus plantarum HY7714). Effects of probiotic LAB on quality, sensory, and microbiological characteristics of Greek yogurt were then compared. Among samples, Greek yogurt fermented by S. thermophilus and L. bulgaricus showed the highest changes of pH and titratable acidity during 21 d of storage at 4 °C. Greek yogurt fermented with L. plantarum HY7714 had a higher viscosity than other samples. Greek yogurt fermented with S. thermophilus, L. bulgaricus, L. gasseri BNR17, and L. plantarum HY7714 showed superior physicochemical properties and received the highest preference score from sensory evaluation among samples. Overall, the population of enterohaemorrhagic Escherichia coli (EHEC) was more effectively reduced in Greek yogurt fermented with probiotic LAB than in commercial Greek yogurt during storage at 4, 10, and 25 °C. Thus, the addition of L. gasseri BNR17 and L. plantarum HY7714 as starter cultures could enhance the microbial safety of Greek yogurt and sensory acceptance by consumers.
Collapse
Affiliation(s)
- So-Young Yang
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ki-Sun Yoon
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Laksana AJ, Choi YM, Kim JH, Kim BS, Kim JY. Real-Time Monitoring the Effects of Storage Conditions on Volatile Compounds and Quality Indexes of Halal-Certified Kimchi during Distribution Using Electronic Nose. Foods 2022; 11:foods11152323. [PMID: 35954088 PMCID: PMC9368639 DOI: 10.3390/foods11152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The food logistics system is an essential sector for maintaining and monitoring the safety and quality of food products and becoming more crucial, especially during and after the pandemic of COVID-19. Kimchi is a popular traditional fermented food originally from Korea and easily changes because of the storage conditions. This study aims to evaluate the effects and the contributions of temperature to volatile compounds, quality indexes, and the shelf life of Halal-certified Kimchi, and to identify alcohol and find the correlation between the identified variables using an electronic nose and conventional method with the integration of multivariate analysis. Thirty-two volatile compounds (VOCs) were detected and correlated with pH, titratable acidity (TA), and lactic acid bacteria (LAB) counts during storage time. Ethanol was also found in the ripened Kimchi and possibly became the critical point of halal Kimchi products besides total acidity, pH, and LAB. Furthermore, the correlation between pH and benzaldehyde, titratable acidity and 3-methylbutanoic acid, and among lactic acid bacteria with ethanol, acetic acid, ethyl acetate, and 3-methylbutanoic acid properly can be used as a given set of variables in the prediction of food quality during storage and distribution.
Collapse
Affiliation(s)
- Andri Jaya Laksana
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea;
| | - Young-Min Choi
- Enterprise Solution Research Center, Korea Food Research Institute (KFRI), Wanju 55365, Korea;
| | - Jong-Hoon Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Korea; (J.-H.K.); (B.-S.K.)
| | - Byeong-Sam Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Korea; (J.-H.K.); (B.-S.K.)
| | - Ji-Young Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Korea; (J.-H.K.); (B.-S.K.)
- Correspondence:
| |
Collapse
|
11
|
Liu L, Tao Y, Li Y, Deng X, Liu G, Yao Y, Chen X, Yang S, Tu M, Peng Q, Huang L, Xiang W, Rao Y. Isolation and characterization of bacteria that produce quorum sensing molecules during the fermentation and deterioration of pickles. Int J Food Microbiol 2022; 379:109869. [DOI: 10.1016/j.ijfoodmicro.2022.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
12
|
Quantitative Microbial Risk Assessment of Listeria monocytogenes and Enterohemorrhagic Escherichia coli in Yogurt. Foods 2022; 11:foods11070971. [PMID: 35407058 PMCID: PMC8997960 DOI: 10.3390/foods11070971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes can survive in yogurt stored at a refrigeration temperature. Enterohemorrhagic Escherichia coli (EHEC) has a strong acid resistance that can survive in the yogurt with a low pH. We estimated the risk of L. monocytogenes and EHEC due to yogurt consumption with @Risk. Predictive survival models for L. monocytogenes and EHEC in drinking and regular yogurt were developed at 4, 10, 17, 25, and 36 °C, and the survival of both pathogens in yogurt was predicted during distribution and storage at home. The average initial contamination level in drinking and regular yogurt was calculated to be −3.941 log CFU/g and −3.608 log CFU/g, respectively, and the contamination level of both LM and EHEC decreased in yogurt from the market to home. Mean values of the possibility of illness caused by EHEC were higher (drinking: 1.44 × 10−8; regular: 5.09 × 10−9) than L. monocytogenes (drinking: 1.91 × 10−15; regular: 2.87 × 10−16) in the susceptible population. Both pathogens had a positive correlation with the initial contamination level and consumption. These results show that the foodborne illness risk from L. monocytogenes and EHEC due to yogurt consumption is very low. However, controlling the initial contamination level of EHEC during yogurt manufacture should be emphasized.
Collapse
|
13
|
Characterization of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum Metabolites and Evaluation of Their Antimicrobial Activity against Food Pathogens. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactic acid bacteria (LAB) play an important role as natural food preservatives. However, the characterization of the variety of their metabolites is limited. The objective of this study was to determine the production of specific metabolites of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum by an optimized liquid chromatography with an ultraviolet/diode detection (HPLC-UV/DAD) method and to investigate their potential antimicrobial activity against specific food pathogens. Based on the results of this study, the main metabolites detected in Levilactobacillus brevis were 103.4 μg mL−1 DL-p-Hydroxyphenyllactic acid (OH-PLA) and 2.59 μg mL−1 vanillic acid, while 216.2 μg mL−1 OH-PLA, 19.0 μg mL−1 salicylic acid, 3.7 μg mL−1 vanillic acid, 6.9 μg mL−1 ferulic acid, 4.2 μg mL−1 benzoic acid and 1.4 μg mL−1 4-Hydrocinnamic acid were identified in the Lactiplantibacillus plantarum strain and 147.6 μg mL−1 OH-PLA and 4.9 μg mL−1 ferulic acid were identified in Lacticaseibacillus rhamnosus. This study provides alternative approaches for the molecules involved in the antimicrobial activity of food microorganism fermentation. These molecules may be used as antimicrobial ingredients in the food industry instead of conventional chemical preservatives.
Collapse
|
14
|
Influence of Salinity on the Microbial Community Composition and Metabolite Profile in Kimchi. FERMENTATION 2021. [DOI: 10.3390/fermentation7040308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kimchi, a popular traditional Korean fermented food, is produced by fermenting vegetables with various spices and salt. Salt plays an important role in the preparation of kimchi and affects its taste and flavor. This study aimed to investigate the effects of salinity on kimchi fermentation. The salinities of five sets of kimchi samples were adjusted to 1.4%, 1.7%, 2.0%, 2.2%, and 2.5%. The characteristics of each kimchi sample, including its pH, acidity, free sugar content, free amino acid content, organic acid content, and microbial community composition, were evaluated during kimchi fermentation. The low-salinity kimchi sample showed a rapid decline in the pH at the beginning of the fermentation process, a relatively high abundance of Leuconostoc mesenteroides, and high mannitol production. In the late fermentation period, Latilactobacillus sakei had a higher abundance in the kimchi sample with high salinity than in other samples. In the initial stage of fermentation, the metabolite composition did not differ based on salinity, whereas the composition was considerably altered from the third week of fermentation. The findings showed variations in the characteristics and standardized manufacturing processes of kimchi at various salt concentrations. Therefore, salinity significantly affected the types and concentrations of fermentation metabolites in kimchi.
Collapse
|
15
|
Liu W, Li H, Liu L, Ko K, Kim I. Screening of gamma-aminobutyric acid-producing lactic acid bacteria and the characteristic of glutamate decarboxylase from Levilactobacillus brevis F109-MD3 isolated from kimchi. J Appl Microbiol 2021; 132:1967-1977. [PMID: 34570423 DOI: 10.1111/jam.15306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
AIMS This study aimed to screen the γ-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) from kimchi, and investigate the glutamate decarboxylase (GAD) activity of the highest GABA-producing strain. METHODS AND RESULTS Seven strains of LAB were screened from kimchi with GABA-producing activity. Strain Levilactobacillus brevis F109-MD3 showed the highest GABA-producing ability. It produced GABA at a concentration of 520 mmol l-1 with a 97.4% GABA conversion rate in MRS broth containing 10% monosodium glutamate for 72 h. The addition of pyridoxal 5'-phosphate had no significant effect on the GAD activity of L. brevis F109-MD3. The optimal pH range of GAD was 3.0-5.0 and the optimal temperature was 65°C. The D value of GAD at 50, 60 and 70°C was 7143, 971 and 124 min respectively and Z value was 11.36°C. CONCLUSIONS Seven strains isolated from kimchi, especially F109-MD3, showed high GABA-production ability even in the high concentrations of MSG at 7.5% and 10%. The GAD activity showed an effective broad pH range and higher optimal temperature. SIGNIFICANCE AND IMPACT OF THE STUDY These seven strains could be potentially useful for food-grade GABA production and the development of healthy foods.
Collapse
Affiliation(s)
- Wenli Liu
- China Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Food Engineering, Ludong University, Yantai, China.,Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| | - Huamin Li
- School of Food Engineering, Ludong University, Yantai, China.,Bionanotechnology Institute, Ludong University, Yantai, China
| | - Long Liu
- China Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Kanghee Ko
- Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| | - Incheol Kim
- Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|