1
|
Roeder AHK, Bent A, Lovell JT, McKay JK, Bravo A, Medina-Jimenez K, Morimoto KW, Brady SM, Hua L, Hibberd JM, Zhong S, Cardinale F, Visentin I, Lovisolo C, Hannah MA, Webb AAR. Lost in translation: What we have learned from attributes that do not translate from Arabidopsis to other plants. THE PLANT CELL 2025; 37:koaf036. [PMID: 40371945 PMCID: PMC12079428 DOI: 10.1093/plcell/koaf036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 05/16/2025]
Abstract
Research in Arabidopsis thaliana has a powerful influence on our understanding of gene functions and pathways. However, not everything translates from Arabidopsis to crops and other plants. Here, a group of experts consider instances where translation has been lost and why such translation is not possible or is challenging. First, despite great efforts, floral dip transformation has not succeeded in other species outside Brassicaceae. Second, due to gene duplications and losses throughout evolution, it can be complex to establish which genes are orthologs of Arabidopsis genes. Third, during evolution Arabidopsis has lost arbuscular mycorrhizal symbiosis. Fourth, other plants have evolved specialized cell types that are not present in Arabidopsis. Fifth, similarly, C4 photosynthesis cannot be studied in Arabidopsis, which is a C3 plant. Sixth, many other plant species have larger genomes, which has given rise to innovations in transcriptional regulation that are not present in Arabidopsis. Seventh, phenotypes such as acclimation to water stress can be challenging to translate due to different measurement strategies. And eighth, while the circadian oscillator is conserved, there are important nuances in the roles of circadian regulators in crop plants. A key theme emerging across these vignettes is that even when translation is lost, insights can still be gained through comparison with Arabidopsis.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, 239 Weill Hall, 526 Campus Rd., Ithaca, NY 14853, USA
| | - Andrew Bent
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - John K McKay
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Armando Bravo
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Kevin W Morimoto
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA 95616, USA
| | - Siobhán M Brady
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA 95616, USA
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Silin Zhong
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Francesca Cardinale
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Ivan Visentin
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Claudio Lovisolo
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Matthew A Hannah
- BASF, BASF Belgium Coordination Center CommV, Technologiepark 101, 9052 Gent, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
2
|
Shen S, Pan L, Li J, Wang J, Ahmad I, Liu H, Bai Y, Kang B, Yin J, Gao Y, Lu Y, Wang X. The Involvement of Amino Acid Metabolism in the Mechanisms of Salt Tolerance Adaptation in Medicago sativa and Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2025; 14:929. [PMID: 40265823 PMCID: PMC11945280 DOI: 10.3390/plants14060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Amino acid metabolism constitutes a major metabolic pathway in plants, playing an important role in the modulation of plant responses to stress. In this study, we investigated the amino acid metabolism responses of M. sativa (Medicago sativa L.) and M. truncatula (Medicago truncatula L.) plants under salt stress using transcriptomic and proteomic approaches to elucidate their salt stress tolerance mechanisms in relation to the regulation of amino acid homeostasis. Transcriptome and proteome sequencing followed by Kyoto Gene and Genome Encyclopedia enrichment analysis revealed 34 differentially expressed genes and 45 differentially expressed proteins involved in valine, leucine, and isoleucine degradation, tyrosine metabolism, and glutathione metabolism. Significant differences were observed in the expression of glutathione S-transferase (GST) within the glutathione metabolic pathway between M. sativa and M. truncatula. The induction of valine, leucine, and isoleucine metabolism, aldehyde dehydrogenases (ALDHs), and alanine-glyoxylate aminotransferases (AGXTs), involved in intracellular reactive oxygen species scavenging, also significantly differed under salt stress. Significant differences were identified in the expression of tyrosine decarboxylases (TDCs) involved in tyrosine metabolism, which are responsible for tyramine biosynthesis and can enhance plant tolerance to salt stress. This study delved into the effects of amino acid metabolism on the salt tolerance mechanisms of M. sativa and M. truncatula, which is crucial in guiding the future breeding of salt-tolerant alfalfa varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoshan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (L.P.); (J.L.); (J.W.); (I.A.); (H.L.); (Y.B.); (B.K.); (J.Y.); (Y.G.); (Y.L.)
| |
Collapse
|
3
|
Ali S, Kucek LK, Riday H, Krom N, Krogman S, Cooper K, Jacobs L, Mehta P, Trammell M, Bhamidimarri S, Butler T, Saha MC, Monteros MJ. Transcript profiling of hairy vetch (Vicia villosa Roth) identified interesting genes for seed dormancy. THE PLANT GENOME 2023; 16:e20330. [PMID: 37125613 DOI: 10.1002/tpg2.20330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Hairy vetch, a diploid annual legume species, has a robust growth habit, high biomass yield, and winter hardy characteristics. Seed hardness is a major constraint for growing hairy vetch commercially. Hard seeded cultivars are valuable as forages, whereas soft seeded and shatter resistant cultivars have advantages for their use as a cover crop. Transcript analysis of hairy vetch was performed to understand the genetic mechanisms associated with important hairy vetch traits. RNA was extracted from leaves, flowers, immature pods, seed coats, and cotyledons of contrasting soft and hard seeded "AU Merit" plants. A range of 31.22-79.18 Gb RNA sequence data per tissue sample were generated with estimated coverage of 1040-2639×. RNA sequence assembly and mapping of the contigs against the Medicago truncatula (V4.0) genome identified 76,422 gene transcripts. A total of 24,254 transcripts were constitutively expressed in hairy vetch tissues. Key genes, such as KNOX4 (a class II KNOTTED-like homeobox KNOXII gene), qHs1 (endo-1,4-β-glucanase), GmHs1-1 (calcineurin-like metallophosphoesterase), chitinase, shatterproof 1 and 2 (SHP1, SHP2), shatter resistant 1-5 (SHAT1-5)(NAC transcription factor), PDH1 (prephenate dehydrogenase 1), and pectin methylesterases with a potential role in seed hardness and pod shattering, were further explored based on genes involved in seed hardness from other species to query the hairy vetch transcriptome data. Identification of interesting candidate genes in hairy vetch can facilitate the development of improved cultivars with desirable seed characteristics for use as a forage and as a cover crop.
Collapse
Affiliation(s)
- Shahjahan Ali
- USDA-ARS, US Dairy Forage Research Center, Madison, Wisconsin, USA
| | | | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Sarah Krogman
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | | | - Lynne Jacobs
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Perdeep Mehta
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Michael Trammell
- Oklahoma State University Cooperative Extension, Shawnee, Oklahoma, USA
| | | | - Twain Butler
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | | |
Collapse
|
4
|
Flores-Duarte NJ, Pajuelo E, Mateos-Naranjo E, Navarro-Torre S, Rodríguez-Llorente ID, Redondo-Gómez S, Carrasco López JA. A Culturomics-Based Bacterial Synthetic Community for Improving Resilience towards Arsenic and Heavy Metals in the Nutraceutical Plant Mesembryanthemum crystallinum. Int J Mol Sci 2023; 24:7003. [PMID: 37108166 PMCID: PMC10138511 DOI: 10.3390/ijms24087003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-growth-promoting bacteria (PGPB) help plants thrive in polluted environments and increase crops yield using fewer inputs. Therefore, the design of tailored biofertilizers is of the utmost importance. The purpose of this work was to test two different bacterial synthetic communities (SynComs) from the microbiome of Mesembryanthemum crystallinum, a moderate halophyte with cosmetic, pharmaceutical, and nutraceutical applications. The SynComs were composed of specific metal-resistant plant-growth-promoting rhizobacteria and endophytes. In addition, the possibility of modulating the accumulation of nutraceutical substances by the synergetic effect of metal stress and inoculation with selected bacteria was tested. One of the SynComs was isolated on standard tryptone soy agar (TSA), whereas the other was isolated following a culturomics approach. For that, a culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard TSA and MA media, stablishing two independent collections. All bacteria were tested for PGP properties, secreted enzymatic activities, and resistance towards As, Cd, Cu, and Zn. The three best bacteria from each collection were selected in order to produce two different consortiums (denominated TSA- and MA-SynComs, respectively), whose effect on plant growth and physiology, metal accumulation, and metabolomics was evaluated. Both SynComs, particularly MA, improved plant growth and physiological parameters under stress by a mixture of As, Cd, Cu, and Zn. Regarding metal accumulation, the concentrations of all metals/metalloids in plant tissues were below the threshold for plant metal toxicity, indicating that this plant is able to thrive in polluted soils when assisted by metal/metalloid-resistant SynComs and could be safely used for pharmaceutical purposes. Initial metabolomics analyses depict changes in plant metabolome upon exposure to metal stress and inoculation, suggesting the possibility of modulating the concentration of high-value metabolites. In addition, the usefulness of both SynComs was tested in a crop plant, namely Medicago sativa (alfalfa). The results demonstrate the effectiveness of these biofertilizers in alfalfa, improving plant growth, physiology, and metal accumulation.
Collapse
Affiliation(s)
- Noris J. Flores-Duarte
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012 Sevilla, Spain; (E.M.-N.); (S.R.-G.)
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012 Sevilla, Spain; (E.M.-N.); (S.R.-G.)
| | - José A. Carrasco López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| |
Collapse
|
5
|
Zhao G, Liu L, Wang ZY, Jin Z, He JS. Grassland Science in a New Era. FUNDAMENTAL RESEARCH 2023; 3:149-150. [PMID: 38932926 PMCID: PMC11197509 DOI: 10.1016/j.fmre.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 03/06/2023] Open
Affiliation(s)
- Guiling Zhao
- Division of Environment and Ecology, Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zeng-Yu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, MN 55455, United States
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|