1
|
Balke I, Silamikelis I, Radovica-Spalvina I, Zeltina V, Resevica G, Fridmanis D, Zeltins A. Ryegrass mottle virus complete genome determination and development of infectious cDNA by combining two methods- 3' RACE and RNA-Seq. PLoS One 2023; 18:e0287278. [PMID: 38051715 DOI: 10.1371/journal.pone.0287278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Ryegrass mottle virus (RGMoV; genus: Sobemovirus) is a single-stranded positive RNA virus with a 30 nm viral particle size. It exhibits T = 3 symmetry with 180 coat protein (CP) subunits forming a viral structure. The RGMoV genome comprises five open reading frames that encode P1, Px, a membrane-anchored 3C-like serine protease, a viral genome-linked protein, P16, an RNA-dependent RNA polymerase, and CP. The RGMoV genome size varies, ranging from 4175 nt (MW411579.1) to 4253 nt (MW411579.1) in the deposited sequences. An earlier deposited RGMoV complete genome sequence of 4212 nt length (EF091714.1) was used to develop an infectious complementary DNA (icDNA) construct for in vitro gRNA transcription from the T7 promoter. However, viral infection was not induced when the transcribed gRNA was introduced into oat plants, indicating the potential absence of certain sequences in either the 5' or 3' untranslated regions (UTR) or both. The complete sequence of the 3' UTR was determined through 3' end RACE, while the 5' UTR was identified using high-throughput sequencing (HTS)-RNA-Seq to resolve the potential absences. Only the icDNA vector containing the newly identified UTR sequences proved infectious, resulting in typical viral infection symptoms and subsequent propagation of progeny viruses, exhibiting the ability to cause repeated infections in oat plants after at least one passage. The successful generation of icDNA highlighted the synergistic potential of utilizing both methods when a single approach failed. Furthermore, this study demonstrated the reliability of HTS as a method for determining the complete genome sequence of viral genomes.
Collapse
Affiliation(s)
- Ina Balke
- Plant Virus Protein Research Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ivars Silamikelis
- Bioinformatics Core Facility, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilze Radovica-Spalvina
- Genome Centre, Genotyping and Sequencing Unit, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vilija Zeltina
- Plant Virology Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Gunta Resevica
- Plant Virology Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Davids Fridmanis
- "Exotic" Site Microbiome and G-Protein Coupled Receptor Functional Research Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Zeltins
- Plant Virology Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
2
|
Bakshi A, Savithri HS. Functional insights into the role of C-terminal disordered domain of Sesbania mosaic virus RNA-dependent RNA polymerase and the coat protein in viral replication in vivo. Virus Res 2019; 267:26-35. [PMID: 31054934 DOI: 10.1016/j.virusres.2019.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
The C-terminal disordered domain of sesbania mosaic virus (SeMV) RNA-dependent RNA polymerase (RdRp) interacts with the viral protein P10. The functional significance of this interaction in viral replication was examined by a comparative analysis of genomic and sub-genomic RNA levels (obtained by quantitative real time PCR) in the total RNA extracted from Cyamopsis plants agro-infiltrated with wild-type or mutant forms of SeMV infectious cDNA (icDNA). The sgRNA copy numbers were found to be significantly higher than those of gRNA in the wild-type icDNA transfected plants. Transfection of a mutant icDNA expressing an RdRp lacking the C-terminal disordered domain led to a drastic reduction in the copy numbers of both forms of viral RNA. This could be due to the loss of interaction between the disordered domain of RdRp and P10 and possibly other viral/host proteins that might be required for the assembly of viral replicase. The C-terminal disordered domain also harbours the motif E which is essential for the catalytic function of RdRp. Mutation of the conserved tyrosine within this motif in the full length icDNA resulted in complete inhibition of progeny RNA synthesis in the transfected plants confirming the importance of motif E in the polymerase function in vivo. The role of coat protein (CP) in viral infection was also investigated by agro-infiltration of a CP start codon mutant icDNA which suggested that CP is essential for the encapsidation of viral progeny RNAs at later stages of infection.
Collapse
Affiliation(s)
- Arindam Bakshi
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
3
|
Interaction of the intrinsically disordered C-terminal domain of the sesbania mosaic virus RNA-dependent RNA polymerase with the viral protein P10 in vitro: modulation of the oligomeric state and polymerase activity. Arch Virol 2019; 164:971-982. [PMID: 30721364 DOI: 10.1007/s00705-019-04163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
The RNA-dependent RNA polymerase (RdRp) of sesbania mosaic virus (SeMV) was previously shown to interact with the viral protein P10, which led to enhanced polymerase activity. In the present investigation, the equilibrium dissociation constant for the interaction between the two proteins was determined to be 0.09 µM using surface plasmon resonance, and the disordered C-terminal domain of RdRp was shown to be essential for binding to P10. The association with P10 brought about a change in the oligomeric state of RdRp, resulting in reduced aggregation and increased polymerase activity. Interestingly, unlike the wild-type RdRp, C-terminal deletion mutants (C del 43 and C del 72) were found to exist predominantly as monomers and were as active as the RdRp-P10 complex. Thus, either the deletion of the C-terminal disordered domain or its masking by binding to P10 results in the activation of polymerase activity. Further, deletion of the C-terminal 85 residues of RdRp resulted in complete loss of activity. Mutation of a conserved tyrosine (RdRp Y480) within motif E, located between 72 and 85 residues from the C-terminus of RdRp, rendered the protein inactive, demonstrating the importance of motif E in RNA synthesis in vitro.
Collapse
|
4
|
Pavesi A, Vianelli A, Chirico N, Bao Y, Blinkova O, Belshaw R, Firth A, Karlin D. Overlapping genes and the proteins they encode differ significantly in their sequence composition from non-overlapping genes. PLoS One 2018; 13:e0202513. [PMID: 30339683 PMCID: PMC6195259 DOI: 10.1371/journal.pone.0202513] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
Overlapping genes represent a fascinating evolutionary puzzle, since they encode two functionally unrelated proteins from the same DNA sequence. They originate by a mechanism of overprinting, in which point mutations in an existing frame allow the expression (the "birth") of a completely new protein from a second frame. In viruses, in which overlapping genes are abundant, these new proteins often play a critical role in infection, yet they are frequently overlooked during genome annotation. This results in erroneous interpretation of mutational studies and in a significant waste of resources. Therefore, overlapping genes need to be correctly detected, especially since they are now thought to be abundant also in eukaryotes. Developing better detection methods and conducting systematic evolutionary studies require a large, reliable benchmark dataset of known cases. We thus assembled a high-quality dataset of 80 viral overlapping genes whose expression is experimentally proven. Many of them were not present in databases. We found that overall, overlapping genes differ significantly from non-overlapping genes in their nucleotide and amino acid composition. In particular, the proteins they encode are enriched in high-degeneracy amino acids and depleted in low-degeneracy ones, which may alleviate the evolutionary constraints acting on overlapping genes. Principal component analysis revealed that the vast majority of overlapping genes follow a similar composition bias, despite their heterogeneity in length and function. Six proven mammalian overlapping genes also followed this bias. We propose that this apparently near-universal composition bias may either favour the birth of overlapping genes, or/and result from selection pressure acting on them.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alberto Vianelli
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Nicola Chirico
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Yiming Bao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Olga Blinkova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert Belshaw
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry (PUPSMD), Plymouth, United Kingdom
| | - Andrew Firth
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | - David Karlin
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Jayasinghe JDHE, Elvitigala DAS, Whang I, Nam BH, Lee J. Molecular characterization of two immunity-related acute-phase proteins: Haptoglobin and serum amyloid A from black rockfish (Sebastes schlegeli). FISH & SHELLFISH IMMUNOLOGY 2015; 45:680-688. [PMID: 25989623 DOI: 10.1016/j.fsi.2015.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
Haptoglobin (Hp) and serum amyloid A (SAA) are two vital proteins involved in inflammatory reactions and are classified as acute-phase proteins. They are released from hepatocytes under inflammatory conditions to protect healthy cells from being damaged by pathogens or from self-destructive mechanisms. In this study, a previously constructed black rockfish (Sebastes schlegeli) cDNA library was used to identify the full-length cDNA sequences of Hp and SAA homologs (RfHp and RfSAA, respectively) and characterize them at the molecular level. As expected, in silico analysis of these homologs showed the typical domain architectures of their known counterparts. Open reading frames of RfHp and RfSAA consisted of 942-bp and 313-bp DNA sequences, respectively. The derived polypeptide sequence of RfHp was composed of 313 amino acids (aa) with a predicted molecular weight of 34 kD, whereas RfSAA had a 121-amino acid sequence with a molecular weight of 13 kD. Phylogenetic analysis as well as pairwise sequence alignment results showed that RfHp was more closely related to Oreochromis mossambicus from an evolutionary perspective while RfSAA was closely related to the Epinephelus coioides ortholog. Although both genes were expressed ubiquitously in the tissues analyzed, they were particularly expressed in liver tissue, suggesting their origin in hepatocytes. Quantitative real-time PCR analysis indicated that both RfHp and RfSAA were significantly up-regulated by both bacterial and viral stimulation in liver tissue, affirming their putative importance in the acute phase of first-line host immune defenses.
Collapse
Affiliation(s)
- J D H E Jayasinghe
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 619-705, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
6
|
Sõmera M, Sarmiento C, Truve E. Overview on Sobemoviruses and a Proposal for the Creation of the Family Sobemoviridae. Viruses 2015; 7:3076-115. [PMID: 26083319 PMCID: PMC4488728 DOI: 10.3390/v7062761] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 12/26/2022] Open
Abstract
The genus Sobemovirus, unassigned to any family, consists of viruses with single-stranded plus-oriented single-component RNA genomes and small icosahedral particles. Currently, 14 species within the genus have been recognized by the International Committee on Taxonomy of Viruses (ICTV) but several new species are to be recognized in the near future. Sobemovirus genomes are compact with a conserved structure of open reading frames and with short untranslated regions. Several sobemoviruses are important pathogens. Moreover, over the last decade sobemoviruses have become important model systems to study plant virus evolution. In the current review we give an overview of the structure and expression of sobemovirus genomes, processing and functions of individual proteins, particle structure, pathology and phylogenesis of sobemoviruses as well as of satellite RNAs present together with these viruses. Based on a phylogenetic analysis we propose that a new family Sobemoviridae should be recognized including the genera Sobemovirus and Polemovirus. Finally, we outline the future perspectives and needs for the research focusing on sobemoviruses.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|