1
|
Matsunaga T, Reisenman CE, Goldman-Huertas B, Rajshekar S, Suzuki HC, Tadres D, Wong J, Louis M, Ramírez SR, Whiteman NK. Odorant receptors tuned to isothiocyanates in Drosophila melanogaster are co-opted and expanded in herbivorous relatives. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617316. [PMID: 39416046 PMCID: PMC11482750 DOI: 10.1101/2024.10.08.617316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Plants release volatile compounds that attract mutualists, deter herbivores, and deceive pollinators. Among them are electrophilic compounds such as isothiocyanates (ITCs) derived Brassicales plants that activate TrpA1 pain receptors by contact in Drosophila melanogaster and humans. However, it is unclear whether generalist animals evolved strategies to detect these electrophilic compounds via olfaction. To address this, and to understand how specialized insects co-opted these toxic compounds as hostplant signatures, we studied generalist micro-feeding (D. melanogaster and Scaptomyza pallida) and herbivorous mustard specialist drosophilid flies (S. flava and S. montana). In behavioral assays, D. melanogaster exposed to volatile allyl isothiocyanate (AITC) were rapidly immobilized, demonstrating the high toxicity of this compound to non-specialists. Through single sensillum recordings (SSR) from olfactory organs and behavioral assays, we found that the Odorant receptor 42a (Or42a) is necessary for volatile AITC detection and behavioral aversion. RNA expression following heterologous expression showed that lineage-specific, triplicated S. flava Or42a proteins exhibited paralog-specific broadened ITC sensitivity. AlphaFold2 modeling followed by site-directed mutagenesis and SSR identified two critical amino acid substitutions that changed Or sensitivity from fruit-derived odors to ITCs during the evolution of Or42a. Our findings suggest that ITCs, which are toxic to most insects, can be detected and avoided by non-specialists like D. melanogaster through olfaction. In the specialist S. flava, paralogous Or42a copies experienced gene duplication and amino acid substitutions resulting in expanded ITC sensitivity. Thus, insect olfactory systems can rapidly adapt to toxic host plant niches through co-option of chemosensory capabilities already present in their ancestors.
Collapse
Affiliation(s)
- Teruyuki Matsunaga
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Carolina E. Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | | | - Srivarsha Rajshekar
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | - Hiromu C. Suzuki
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | - David Tadres
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA
| | - Joshua Wong
- The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA
| | - Santiago R. Ramírez
- Department of Evolution and Ecology, University of California Davis, Davis, CA
| | - Noah K. Whiteman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
2
|
Bhavanam S, Stout MJ. Varietal Resistance and Chemical Ecology of the Rice Stink Bug, Oebalus pugnax, on Rice, Oryza sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:3169. [PMID: 36432898 PMCID: PMC9699337 DOI: 10.3390/plants11223169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The rice stink bug, Oebalus pugnax F. (Hemiptera: Pentatomidae), is a key pest of heading rice in the southern United States. Chemical insecticide application is currently the primary method of control of O. pugnax, warranting an improved management program for this species. The potential other management tactics for O. pugnax include eco-friendly measures such as host-plant resistance, silicon application, and the use of semiochemicals. In this study, the feeding preference and performance of O. puganx on cultivated and non-cultivated rice varieties were examined. Choice tests showed that the rice varieties Cheniere and Kaybonnet were most and least preferred by O. pugnax for feeding, respectively. The results of a no-choice experiment showed that the number of nymphs surviving to the adult stage did not differ among rice varieties, although the percent survival was low on the varieties Kaybonnet and Jazzman. Here, we also showed for the first time that silicon application had a significant negative impact on O. pugnax performance, increasing the nymph development time and reducing survival by almost 40% relative to the control. Based on these results, it could be suggested that silicon amendment is a promising management strategy for this pest. Further research is needed to examine whether silicon application also reduces the feeding damage caused by O. puganx. In addition, the chemical compositions of the metathoracic gland and dorsal abdominal gland extracts were also characterized for the first time in this study, and their biological roles and potential use in pest management are discussed.
Collapse
|
3
|
Gaffke AM, Sing SE, Millar JG, Dudley TL, Bean DW, Peterson RKD, Weaver DK. An Herbivore-Induced Plant Volatile From Saltcedar (Tamarix spp.) Is Repellent to Diorhabda carinulata (Coleoptera: Chrysomelidae). ENVIRONMENTAL ENTOMOLOGY 2020; 49:1063-1070. [PMID: 32725136 DOI: 10.1093/ee/nvaa079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The leaf beetle Diorhabda carinulata Desbrochers (Coleoptera: Chrysomelidae) was introduced into the United States in 1999 for classical biological control of the exotic woody invader saltcedar (Tamarix spp. L. [Caryophyllales: Tamaricaceae]). The recent southern expansion of the range of D. carinulata in the United States has precipitated conflict between proponents of biological control of Tamarix and those with concerns over habitat conservation for avian species. Several semiochemicals that mediate aggregations by this species have been reported, but no repellent compounds have been recorded thus far. We now report a repellent compound, 4-oxo-(E)-2-hexenal, induced by adult D. carinulata feeding on saltcedar foliage. Collection of headspace volatiles, gas chromatography mass spectrometry, and electroantennographic analyses identified 4-oxo-(E)-2-hexenal as an insect-induced compound that is antennally active. Behavioral and exposure assays were conducted to test for repellency and toxicity in adults and larvae. Headspace volatiles were also collected from adult males exposed to 4-oxo-(E)-2-hexenal to determine the impact exposure might have on the emission of the aggregation pheromone. 4-Oxo-(E)-2-hexenal elicited electrophysiological responses in adults of both sexes. Behavioral responses indicated repellency across multiple doses for reproductive D. carinulata adults but not in nonreproductive adults. Exposure assays indicated altered behaviors in first instar larvae and adults, but not in third instar larvae. Collection of headspace volatiles indicated that exposure to 4-oxo-(E)-2-hexenal did not alter emission of the D. carinulata aggregation pheromone by adult males. The continued development and field deployment of this repellent compound may provide a new tool for the management of D. carinulata.
Collapse
Affiliation(s)
- Alexander M Gaffke
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT
- Agricultural Research Service, Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL
| | - Sharlene E Sing
- USDA Forest Service, Rocky Mountain Research Station, Bozeman, MT
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA
| | - Tom L Dudley
- Marine Science Institute, University of California, Santa Barbara, CA
| | - Daniel W Bean
- Colorado Department of Agriculture, Palisade Insectary, Palisade, CO
| | - Robert K D Peterson
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT
| | - David K Weaver
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT
| |
Collapse
|
4
|
Tomčala A, Jirošová A, Žáček P, Kaušková M, Hovorka O, Koutek B. Species Specificity of Aldehyde and Fatty Acid Profiles of Four Family Group Representatives within the Insect Infraorder Pentatomomorpha(Hemiptera: Heteroptera). Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201600420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Aleš Tomčala
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
- Institute of Parasitology; Biology Center; Czech Academy of Sciences; Branišovská 31 370 05 České Budějovice Czech Republic
| | - Anna Jirošová
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Petr Žáček
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Markéta Kaušková
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Oldřich Hovorka
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Bohumír Koutek
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| |
Collapse
|