1
|
Abrego-Guandique DM, Ilori OA, Caroleo MC, Cannataro R, Cione E, Tucci P. Differential Digestive Stability of Food-Derived microRNAs: The Case of miR-30c-5p and miR-92a-3p in Polyfloral Honey. Curr Issues Mol Biol 2024; 46:7473-7485. [PMID: 39057084 PMCID: PMC11276035 DOI: 10.3390/cimb46070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary microRNAs (miRs) represent a new area in food science. Although they have been found in many foods, including honey, more research is needed about their stability and fate during digestion. Hence, this study aimed to analyze the digestive stability of two selected miRs in honey. We extracted miR-92a-3p and miR-30c-5p from pasteurized and unpasteurized forms of polyfloral honey using two different methods and kits: a column-based manual method and a phenol-free semi-automated magnetic-bead-based method. The latter option was used for the subsequent analysis of samples according to the INFOGEST static in vitro digestion protocol. Also, the honey samples were examined for exosome-like particles using dynamic light scattering. Although the expression levels of both miRs were significantly lower following intestinal digestion, we found a difference in the resilience of the miRs to gastrointestinal conditions, with miR-30c-5p being relatively stable compared to miR-92a-3p following digestion, regardless of the honey's pasteurization treatment. Moreover, there was marked heterogeneity in the extracellular vesicle profile of the pasteurized sample. We identified the presence of two broadly conserved miRs in honey: miR-92a-3p and miR-30c-5p. Despite honey exhibiting high digestibility, miR-92a-3p was less resilient than miR-30c-5p, demonstrating considerable resistance under gastrointestinal conditions. Although further research is needed, the results obtained from this study may represent a starting point for utilizing honey as a source of exogenous miRNAs for preventive strategies and more "natural" treatments.
Collapse
Affiliation(s)
| | - Olubukunmi Amos Ilori
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (O.A.I.); (P.T.)
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy; (D.M.A.-G.); (M.C.C.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogota 110861, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (O.A.I.); (P.T.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Paola Tucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (O.A.I.); (P.T.)
| |
Collapse
|
2
|
Roxo I, Amaral A, Portugal A, Trovão J. A preliminary metabarcoding analysis of Portuguese raw honeys. Arch Microbiol 2023; 205:386. [PMID: 37982894 DOI: 10.1007/s00203-023-03725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The microbial diversity in Portuguese raw honeys remains largely uncharacterized, constituting a serious knowledge gap in one of the country's most important resources. This work provides an initial investigation with amplicon metabarcoding analysis of two Lavandula spp. from different geographical regions of Portugal and one Eucalyptus spp. honey. The results obtained allowed to identify that each honey harbors diverse microbiomes with taxa that can potentially affect bee and human health, cause spoilage, and highlight bad bee-hive management practices. We verified that prokaryotes had a tendency towards a more marked core bacterial and a relative homogenous taxa distribution, and that the botanical origin of honey is likely to have a stronger impact on the fungal community. Thus, the results obtained in this work provide important information that can be helpful to improve this critical Portuguese product and industry.
Collapse
Affiliation(s)
- Ivo Roxo
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
| | - António Amaral
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga/Guimarães, Portugal
- Instituto de Investigação Aplicada, Laboratório SiSus, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
| | - António Portugal
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- Centre for Functional Ecology-Science for People & the Planet, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - João Trovão
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Centre for Functional Ecology-Science for People & the Planet, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
3
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|