1
|
Wen J, Liu H, Lai H, Xu Y, Wu J, Yu Y, Huang W, Fu M, Liu H. Widely Targeted Metabolomics Reveal the Distribution of Metabolites in Shatian Pomelo Fruit. Foods 2024; 13:3698. [PMID: 39594113 PMCID: PMC11593426 DOI: 10.3390/foods13223698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology in multiple reaction monitoring mode, a widely targeted metabolomics approach was employed to identify metabolites in five tissues (exocarp, endocarp, segment membrane, pulp, and seeds) of the Shatian pomelo fruit. The differences in metabolite composition and abundance among different tissues were analyzed using multivariate statistical analysis methods. The results showed that a total of 1722 metabolites were identified from the five tissues of the Shatian pomelo, including 413 flavonoids and 277 amino acids and their derivatives. Flavonoid metabolites accumulate the most abundantly in the exocarp and seeds, while amino acids and their derivatives are primarily accumulated in the exocarp and pulp. A total of 649 key differential metabolites were screened, including flavonoids, amino acids, and their derivatives, indicating the presence of tissue-specific accumulation of metabolites in the Shatian pomelo. This study systematically investigated the metabolite distribution in different tissue parts of the Shatian pomelo, and validated the feasibility of widely targeted metabolomics technology in pomelo quality analysis. It provided a theoretical reference for metabolic research on the Shatian pomelo and other citrus fruits, and offered a theoretical basis for the efficient utilization of pomelo resources.
Collapse
Affiliation(s)
- Jing Wen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (H.L.)
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Haocheng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (H.L.)
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Huining Lai
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Yujuan Xu
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Jijun Wu
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Yuanshan Yu
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Wenqian Huang
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Manqin Fu
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Haiyang Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (H.L.)
| |
Collapse
|
2
|
Minoretti P, Fortuna G, D'Acquino D, Lavdas K. Comparative Analysis of Taste Perception Among Airline Pilots, Construction Workers, and Office Employees. Cureus 2024; 16:e69361. [PMID: 39398755 PMCID: PMC11471285 DOI: 10.7759/cureus.69361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Occupational exposures may influence gustatory sensations through mechanisms such as fatigue, acute or chronic stress, circadian rhythm disruptions, and exposure to various chemicals. In this cross-sectional study, we sought to compare taste perception across three professional groups, namely airline pilots, construction workers, and office employees, by assessing taste identification times for sweet, salty, sour, and bitter flavors, alongside salivary pH levels. Methods The study cohort consisted of 90 healthy male participants, with 30 individuals in each occupational group, matched for age and professional experience. Salivary pH was measured using pH meter paper, whereas taste identification times were assessed using aqueous solutions applied to dissolvable strips for each taste. Results There were no significant differences in salivary pH among the study groups. However, airline pilots exhibited a significantly longer identification time for sweet taste (9.8 ± 3.9 seconds) compared to construction workers (7.0 ± 3.1 seconds, P < 0.05) and office employees (7.1 ± 3.3 seconds, P < 0.05). Conversely, construction workers demonstrated a significantly prolonged identification time for sour taste (6.1 ± 2.9 seconds) compared to pilots (4.2 ± 2.6 seconds, P < 0.05) and office employees (4.6 ± 2.5 seconds, P < 0.05). No significant differences were observed in the identification times for salty and bitter tastes across the groups. Conclusion We found significant differences in taste perception among airline pilots, construction workers, and office employees, particularly concerning sweet and sour tastes. These findings suggest that occupational factors may influence gustatory function in a complex manner. Further research is warranted to explore the underlying mechanisms and potential implications for dietary habits and health within specific occupational groups.
Collapse
|
3
|
Ren Y, Mao S, Zeng Y, Chen S, Tian J, Ye X. Pectin from Citrus unshiu Marc. Alleviates Glucose and Lipid Metabolism by Regulating the Gut Microbiota and Metabolites. Foods 2023; 12:4094. [PMID: 38002152 PMCID: PMC10670317 DOI: 10.3390/foods12224094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The effects of pectin from Citrus unshiu Marc. on glycolipid metabolism, the morphologies of the pancreas and epididymal fat, the gut microbiota, and the metabolites of short-chain fatty acids (SCFAs) in db/db mice were investigated in this study. The results indicated that pectin reduced the levels of fasting blood glucose, glycated serum protein, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while increasing the levels of high-density lipoprotein cholesterol. Meanwhile, pectin could improve the morphology of islet cells and inhibit the hypertrophy of adipocytes. Additionally, pectin not only regulated the intestinal flora dysbiosis in db/db mice, as shown by the increasing proportion of Firmicutes/Bacteroidetes and the relative abundance of Ligilactobacillus, Lactobacillus, and Limosilactobacillus, but also remedied the metabolic disorder of SCFAs in db/db mice. These results suggest that pectin could promote glucose and lipid metabolism by regulating the intestinal flora with changes in SCFA profile. This study proves that pectin might serve as a new prebiotic agent to prevent the disorder of glycolipid metabolism.
Collapse
Affiliation(s)
- Yanming Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Shuifang Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Yujun Zeng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| |
Collapse
|
4
|
Ren Y, Yu D, Wu J, Mao S, Chen P, Chen S, Gao Q, Ye X, Tian J. Preparation and physicochemical properties characterization of hesperetin-grafted pectin conjugate. Int J Biol Macromol 2023:124887. [PMID: 37196711 DOI: 10.1016/j.ijbiomac.2023.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Different ratios of hesperetin (HT) were successfully grafted onto pectin from basic water (PB) molecules via free radical-induced reaction. The structure of PB-HT conjugates was characterized by ultraviolet spectroscopy, infrared spectroscopy, X-ray diffraction and scanning electron microscopy. Results indicated that HT was successfully grafted onto pectin molecules, and PB-HT-0.5 showed the highest HT content (103.18 ± 2.76 mg/g). Thermogravimetric analysis indicated that HT crystals showed good thermal resistance and could improve the thermal stability of PB-HT conjugates. Additionally, PB-HT conjugates showed good cytocompatibility and blood compatibility. This study provides a novel and efficient method to synthesize hesperetin-grafted pectin conjugate, which showed potential application in the fields of functional foods in the future.
Collapse
Affiliation(s)
- Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Dandan Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Jiaxiong Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Shuifang Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Pin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Qiang Gao
- Shandong Huihuang Food Co., Ltd., Linyi 276000, Shandong, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Wu J, Shen S, Gao Q, Yu C, Cheng H, Pan H, Chen S, Ye X, Chen J. RG-I Domain Matters to the In Vitro Fermentation Characteristics of Pectic Polysaccharides Recycled from Citrus Canning Processing Water. Foods 2023; 12:foods12050943. [PMID: 36900460 PMCID: PMC10000670 DOI: 10.3390/foods12050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Canned citrus is a major citrus product that is popular around the world. However, the canning process discharges large amounts of high-chemical oxygen demand wastewater, which contains many functional polysaccharides. Herein, we recovered three different pectic polysaccharides from citrus canning processing water and evaluated their prebiotic potential as well as the relationship between the RG-I domain and fermentation characteristics using an in vitro human fecal batch fermentation model. Structural analysis showed a large difference among the three pectic polysaccharides in the proportion of the rhamnogalacturonan-I (RG-I) domain. Additionally, the fermentation results showed that the RG-I domain was significantly related to pectic polysaccharides' fermentation characteristics, especially in terms of short-chain fatty acid generation and modulation of gut microbiota. The pectins with a high proportion of the RG-I domain performed better in acetate, propionate, and butyrate production. It was also found that Bacteroides, Phascolarctobacterium, and Bifidobacterium are the main bacteria participating in their degradation. Furthermore, the relative abundance of Eubacterium_eligens_group and Monoglobus was positively correlated with the proportion of the RG-I domain. This study emphasizes the beneficial effects of pectic polysaccharides recovered from citrus processing and the roles of the RG-I domain in their fermentation characteristics. This study also provides a strategy for food factories to realize green production and value addition.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Sihuan Shen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qiang Gao
- Shandong Huihuang Food Co., Ltd., Linyi 276000, China
| | - Chengxiao Yu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Huan Cheng
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Correspondence:
| |
Collapse
|
6
|
Lucia C, Laudicina VA, Badalucco L, Galati A, Palazzolo E, Torregrossa M, Viviani G, Corsino SF. Challenges and opportunities for citrus wastewater management and valorisation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115924. [PMID: 36104880 DOI: 10.1016/j.jenvman.2022.115924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Citrus wastewaters (CWWs) are by-products of the citrus fruit transformation process. Currently, more than 700 million of m³ of CWWs per year are produced worldwide. Until nowadays, the management of CWWs is based on a take-make-use-dispose model. Indeed, after being produced within a citrus processing industry, CWWs are subjected to treatment and then discharged into the environment. Now, the European Union is pushing towards a take-make-use-reuse management model, which suggests to provide for the minimization of residual pollutants simultaneously with their exploitation through a biorefinery concept. Indeed, the recovery of energy nutrients and other value-added products held by CWWs may promote environmental sustainability and close the nutrient cycles in line with the circular bio-economy perspective. Unfortunately, knowledge about the benefits and disadvantages of available technologies for the management and valorisation of CWWs are very fragmentary, thus not providing to the scientific community and stakeholders an appropriate approach. Moreover, available studies focus on a specific treatment/valorisation pathway of CWWs and an overall vision is still missing. This review aims to provide an integrated approach for the sustainable management of CWWs to be proposed to company managers and other stakeholders within the legislative boundaries and in line with the circular bio-economy perspective. To this aim, firstly, a concise analysis of citrus wastewater characteristics and the main current regulations on CWWs are reported and discussed. Then, the main technologies with a general comparison of their pros and cons, and alternative pathways for CWWs utilization are presented and discussed. Finally, a focus was paid to the economic feasibility of the solutions proposed to date relating to the recovery of the CWWs for the production of both value-added compounds and agricultural reuse. Based on literature analysis an integrated approach for a sustainable CWWs management is proposed. Such an approach suggests that after chemicals recovery by biorefinery, wastewaters should be directly used for crop irrigation if allowed by regulations or addressed to treatment plant. The latter way should be preferred when CWWs cannot be directly applied to soil due to lack of concomitance between CWWs production and crop needs. In such a way, treated wastewater should be reused after tertiary treatments for crop irrigation, whereas produced sludges should be undergone to dewatering treatment before being reused as organic amendment to improve soil fertility. Finally, this review invite European institutions and each Member State to promote common and specific legislations to overcome the fragmentation of the regulatory framework regarding CWWs reuse.
Collapse
Affiliation(s)
- Caterina Lucia
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Vito Armando Laudicina
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy.
| | - Luigi Badalucco
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Antonino Galati
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Eristanna Palazzolo
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| | - Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| |
Collapse
|