1
|
Liu M, Li S, Cao S, Liu C, Han Y, Cheng J, Zhang S, Zhao J, Shi Y. Let food be your medicine - dietary fiber. Food Funct 2024; 15:7733-7756. [PMID: 38984439 DOI: 10.1039/d3fo05641d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Dietary fiber (DF) cannot be digested and absorbed by the digestive tract, nor can it provide the energy needed to be burned for metabolic activities. Therefore, from the 1950s to the 1980s, DF received little attention in nutrition studies. With in-depth research and developments in global nutrition, people have gradually paid attention to the fact that DF occupies an essential position in the structure of nutrition, and it can ensure the healthy development of human beings. As early as 390 B.C., the ancient Greek physician Hippocrates proposed, "Let your food be your medicine, and your medicine be your food". This concept has been more systematically validated in modern scientific research, with numerous epidemiological studies showing that the dietary intake of DF-rich foods such as whole grains, root vegetables, legumes, and fruits has the potential to regulate the balance of the gut microbiota and thereby prevent diseases. However, the crosstalk between different types of DF and the gut microbiota is quite complex, and the effects on the organism vary. In this paper, we discuss research on DF and the gut microbiota and related diseases, aiming to understand the relationship between all three better and provide a reference basis for the risk reduction of related diseases.
Collapse
Affiliation(s)
- Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Jiawen Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, 450002, China
| |
Collapse
|
2
|
Li X, Wang Y, Jiang Y, Liu C, Zhang W, Chen W, Tian L, Sun J, Lai C, Bai W. Microencapsulation with fructooligosaccharides and whey protein enhances the antioxidant activity of anthocyanins and their ability to modulate gut microbiota in vitro. Food Res Int 2024; 181:114082. [PMID: 38448092 DOI: 10.1016/j.foodres.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Anthocyanins are the primary functional pigments in the diet. However, anthocyanins exhibit instability during digestion, coupled with limited bioavailability. Microencapsulation offers anthocyanins a sheltered environment, enhancing their stability and bioactivity. Fructooligosaccharides (FOS) and whey protein (WP) commonly serve as wall materials in microencapsulation and represent a significant source of probiotic functionality. Our prior research successfully established a robust microencapsulation system for anthocyanins utilizing FOS and WP. This study investigates the antioxidative capacity, stability during in vitro digestion, modulation on gut microbiota, and short-chain fatty acids (SCFAs) production of black soybean skin anthocyanins microencapsulated with FOS and WP (anthocyanin-loaded microencapsule particles, ALM). The results demonstrate that ALM exhibits a superior antioxidant capacity compared to free anthocyanins (ANCs) and cyanidin-3-glucoside (C3G). During simulated digestion, ALM exhibits enhanced anthocyanin retention compared with ANC in both gastric and intestinal phases. In comparison with ANC and even non-loaded microcapsules (NLM), in vitro fermentation demonstrates that ALM exhibits the highest gas production and lowered pH, indicating excellent fermentation activity. Furthermore, in comparison with ANC or NLM, ALM exerts a positive influence on the diversity and composition of gut microbiota, with potentially beneficial genera such as Faecalibacterium and Akkermansia exhibiting higher relative abundance. Moreover, ALM stimulates the production of SCFAs, particularly acetic and propionic acids. In conclusion, microencapsulation of anthocyanins with FOS-WP enhances their antioxidative capacity and stability during in vitro digestion. Simultaneously, this microencapsulation illustrates a positive regulatory effect on the intestinal microbiota community and SCFA production, conferring potential health benefits.
Collapse
Affiliation(s)
- Xusheng Li
- The Sixth Affiliated Hospital of Jinan University, Dongguan, 523576, PR China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Yuxin Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Chuqi Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Wenbao Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Weiwen Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Caiyong Lai
- The Sixth Affiliated Hospital of Jinan University, Dongguan, 523576, PR China; Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|