1
|
de Souza HF, Monteiro GF, Bogáz LT, Freire ENS, Pereira KN, Vieira de Carvalho M, Gomes da Cruz A, Viana Brandi I, Setsuko Kamimura E. Bibliometric analysis of water kefir and milk kefir in probiotic foods from 2013 to 2022: A critical review of recent applications and prospects. Food Res Int 2024; 175:113716. [PMID: 38128984 DOI: 10.1016/j.foodres.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Although milk kefir and water kefir have different physical, chemical and microbiological characteristics, several microbial species that make up kefir stand out with probiotic functions. Furthermore, because it is suitable for a variety of substrates, kefir and the species of probiotic microorganisms that make it up are seen as a promising alternative in the development of probiotic and health-promoting foods. The aim of this study was to carry out a bibliometric analysis of water kefir and milk kefir in probiotic foods and to critically analyze recent applications and prospects. Using the Scopus database, 202 documents published between 2013 and 2022 were identified and submitted to bibliometric analysis using the VOSviewer software. Regarding recent applications, 107 documents published between 2021 and June 2023 were identified. It was observed that, in the literature consulted, no study used bibliometric analysis to evaluate the use of water kefir and milk kefir in probiotic foods. Due to the presence of probiotic species, kefir has been listed as an alternative for the production of new probiotic food matrices that are beneficial to health. Recent applications show kefir's potential in the development of probiotic products based on fruit and fruit juice, whey beverages, fermented milks and derivatives, and alcoholic beverages such as beers.
Collapse
Affiliation(s)
- Handray Fernandes de Souza
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil.
| | - Giovana Felício Monteiro
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Lorena Teixeira Bogáz
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Eduardo Novais Souza Freire
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Karina Nascimento Pereira
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Marina Vieira de Carvalho
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro (IFRJ), 20270-021 Rio de Janeiro, RJ, Brazil
| | - Igor Viana Brandi
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Av. Universitária, 1000, 39404-547 Montes Claros, Minas Gerais, Brazil
| | - Eliana Setsuko Kamimura
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| |
Collapse
|
2
|
Refining Citrus Wastes: From Discarded Oranges to Efficient Brewing Biocatalyst, Aromatic Beer, and Alternative Yeast Extract Production. BEVERAGES 2021. [DOI: 10.3390/beverages7020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Agro-industrial wastes can be valorized as biorefinery raw materials through innovative, environmentally friendly bioprocessing for added value products. In this study, a process for citrus waste valorization within the biorefinery concept is proposed, including the development of an effective biocatalyst, based on immobilized cells, for aromatic beer production, and an alternative yeast extract (AYE) production in the same unit. Specifically, orange pulp from discarded oranges was applied as an immobilization carrier of the alcohol-resistant and cryotolerant yeast strain S. cerevisiae AXAZ-1. The yeast culture was produced by minor nutrient supplementation using diluted molasses as substrate. An effective Citrus Waste Brewing Biocatalyst (CWBB) was produced and applied for beer fermentation. The aroma-related compounds in beer produced with free yeast cells or the CWBB were evaluated by solid-phase micro-extraction (SPME) gas chromatography–mass spectrometry (GC–MS). The analysis showed that the beers produced by the CWBB had a more complex volatile profile compared with beer fermented by the free cells. More specifically, the CWBB enhanced the formation of esters and terpenes by 5- and 27-fold, respectively. In the frame of the proposed multiprocessing biorefinery concept, the spent CWBB, after it has completed its cycle of brewing batches, was used as substrate for AYE production through autolysis. The produced AYE significantly affected the yeast growth when compared to commercial yeast extract (CYE). More specifically, it promoted the biomass productivity and biomass yield factor by 60–150% and 110–170%, respectively. Thus, AYE could be successfully used for industrial cell growth as an efficient and cheaper substitute of CYE. Within a circular economy framework, the present study highlights the potential use of citrus waste to produce aromatic beer combined with AYE production as an alternative way to valorize these wastes.
Collapse
|
3
|
Revealing new promoters in whey fermentation leads to a new research concept. Heliyon 2019; 5:e01262. [PMID: 30891511 PMCID: PMC6395786 DOI: 10.1016/j.heliyon.2019.e01262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/29/2022] Open
Abstract
The current investigation reveals new findings concerning the substantial promotional activity of orange juice, orange peel and molasses on whey fermentation using single cell culture of kefir microflora. Specifically, the addition in whey of only 1 % v/v orange juice or 1% v/v molasses - 4% w/v orange peel reduced the fermentation time to 10 from 70 hours. But the lowest fermentation time (9 h) was observed when a composite biocatalyst consisted of cells entrapped with orange peel in corn starch gel was used, where also the highest 14C-labeled lactose uptake rate by kefir was recorded. Bio-ethanol concentrations were increased using all the aforementioned promoters too and volatile byproducts such as esters were raised during the whey-orange juice mixtures fermentations, while terpenes by composite biocatalyst. The findings could be the base for new research projects for the rapid production of novel food stuffs and chemicals using whey as raw material.
Collapse
|
4
|
Upgrading of Mixed Food Industry Side-Streams by Solid-State Fermentation with P. ostreatus. RECYCLING 2018. [DOI: 10.3390/recycling3020012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Gervasi T, Pellizzeri V, Calabrese G, Di Bella G, Cicero N, Dugo G. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae. Nat Prod Res 2017; 32:648-653. [DOI: 10.1080/14786419.2017.1332617] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Vito Pellizzeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuseppa Di Bella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Nikolaou A, Galanis A, Kanellaki M, Tassou C, Akrida-Demertzi K, Kourkoutas Y. Assessment of free and immobilized kefir culture in simultaneous alcoholic and malolactic cider fermentations. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Tamer CE, Çopur ÖU. Development of Value-Added Products from Food Wastes. FOOD ENGINEERING SERIES 2014. [DOI: 10.1007/978-1-4939-1378-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Discarded oranges and brewer's spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures. Appl Biochem Biotechnol 2013; 170:1885-95. [PMID: 23780341 DOI: 10.1007/s12010-013-0313-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
The exploitation of various agro-industrial wastes for microbial cell mass production of Kluyveromyces marxianus, kefir, and Saccharomyces cerevisiae is reported in the present investigation. Specifically, the promotional effect of whole orange pulp on cell growth in mixtures consisting of cheese whey, molasses, and potato pulp in submerged fermentation processes was examined. A 2- to 3-fold increase of cell mass was observed in the presence of orange pulp. Likewise, the promotional effect of brewer's spent grains on cell growth in solid state fermentation of mixtures of whey, molasses, potato pulp, malt spent rootlets, and orange pulp was examined. The cell mass was increased by 3-fold for K. marxianus and 2-fold for S. cerevisiae in the presence of these substrates, proving their suitability for single-cell protein production without the need for extra nutrients. Cell growth kinetics were also studied by measurements of cell counts at various time intervals at different concentrations of added orange pulp. The protein content of the fermented substrates was increased substantially, indicating potential use of mixed agro-industrial wastes of negligible cost, as protein-enriched livestock feed, achieving at the same time creation of added value and waste minimization.
Collapse
|
9
|
Microbial ecology and quality assurance in food fermentation systems. The case of kefir grains application. Anaerobe 2011; 17:483-5. [DOI: 10.1016/j.anaerobe.2011.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/12/2011] [Accepted: 03/14/2011] [Indexed: 11/23/2022]
|
10
|
Koutinas AA, Papapostolou H, Dimitrellou D, Kopsahelis N, Katechaki E, Bekatorou A, Bosnea LA. Whey valorisation: a complete and novel technology development for dairy industry starter culture production. BIORESOURCE TECHNOLOGY 2009; 100:3734-3739. [PMID: 19254836 DOI: 10.1016/j.biortech.2009.01.058] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/29/2009] [Accepted: 01/31/2009] [Indexed: 05/27/2023]
Abstract
Whey is the major by-product of the dairy industry, produced in large quantities and usually disposed off causing major environmental pollution, due to its high organic load that makes treatment cost prohibitive. This paper comprises a contribution on the valorisation of this high polluting liquid waste of the dairy industry, based on research for the production of novel dairy starter cultures using whey as raw material. Starter cultures are used for cheese ripening in order to: (i) accelerate ripening, (ii) improve quality and (iii) increase shelf-life. The developed technology involves biomass production from whey followed by thermal drying of cultures. Specifically, Kluyveromyces marxianus, Lactobacillus bulgaricus and kefir yeasts were thermally dried, and their efficiency in lactose and milk whey fermentations was studied. The most suitable culture regarding its technological properties was kefir, which was used for cheese ripening in freeze-dried and thermally dried form. Besides the reduction of production cost, which is an essential requirement for the food industry, the use of thermally dried kefir displayed several other advantages such as acceleration of ripening, increase of shelf-life, and improvement of hard-type cheese quality.
Collapse
Affiliation(s)
- Athanasios A Koutinas
- Food Biotechnology Group, Section of Analytical Environmental and Applied Chemistry, Department of Chemistry, University of Patras, GR-26500 Patras, Greece.
| | | | | | | | | | | | | |
Collapse
|
11
|
Dimitrellou D, Kourkoutas Y, Koutinas AA, Kanellaki M. Thermally-dried immobilized kefir on casein as starter culture in dried whey cheese production. Food Microbiol 2009; 26:809-20. [PMID: 19835765 DOI: 10.1016/j.fm.2009.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 04/07/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Abstract
The aim of the present study was to evaluate the use of thermally-dried immobilized kefir on casein as a starter culture for protein-enriched dried whey cheese. For comparison reasons, dried whey cheese with thermally-dried free kefir culture and with no starter culture were also produced. The effect of the nature of the culture, the ripening temperature and the ripening process on quality characteristics of the whey cheese was studied. The association of microbial groups during cheese maturation suggested repression of spoilage and protection from pathogens due to the thermally-dried kefir, as counts of coliforms, enterobacteria and staphylococci were significantly reduced in cheeses produced using thermally-dried kefir starter cultures. The effect of the starter culture on production of volatile compounds responsible for cheese flavor was also studied using the SPME GC/MS technique. Thermally-dried immobilized kefir starter culture resulted in an improved profile of aroma-related compounds. The preliminary sensory evaluation ascertained the soft, fine taste and the overall improved quality of cheese produced with the thermally-dried immobilized kefir. The potential of protein-based thermally-dried starter cultures in dairy products is finally highlighted and assessed.
Collapse
Affiliation(s)
- D Dimitrellou
- Food Biotechnology Group, Section of Analytical Environmental and Applied Chemistry, Department of Chemistry, University of Patras, Patras GR-26500, Achaia, Greece
| | | | | | | |
Collapse
|
12
|
Plessas S, Bekatorou A, Gallanagh J, Nigam P, Koutinas A, Psarianos C. Evolution of aroma volatiles during storage of sourdough breads made by mixed cultures of Kluyveromyces marxianus and Lactobacillus delbrueckii ssp. bulgaricus or Lactobacillus helveticus. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|