1
|
Soodbar M, Mojgani N, Sanjabi MR, Mirdamadi S, Soltani M. Physicochemical, Antioxidant Characteristics and Sensory Evaluation of Functional Pro-Biogenic Ice Cream. Food Sci Nutr 2025; 13:e4619. [PMID: 39803295 PMCID: PMC11717036 DOI: 10.1002/fsn3.4619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
Pro-biogenic is a recent terminology widely used for products that combine biogenic materials and probiotics which has made progressive improvement in a new era of research on functional foods. This study aimed to develop functional ice cream with Bacillus coagulans and propolis extract (PE) as a biogenic part to develop ice cream's physiochemical and antioxidant characteristics. Five probiotic ice cream samples were prepared using different levels of PE powder (0%, 0.2%, 0.4%, 0.6%, and 0.8% w/w), and the physicochemical, total phenol content (TPC), antioxidant and sensory properties, and probiotic survival of the samples were examined. The study found that PE levels did not significantly impact fat, protein, carbohydrate, and ash content, overrun, melting rate, and adhesiveness of probiotic ice cream, but increased dry matter, apparent viscosity, and hardness. Adding PE to freeze-storage samples significantly (p < 0.05) reduced pH and improved TPC and antioxidant activity. The prepared ice cream containing probiotic bacteria and PE extracts, despite their darker and yellower color, were acceptable based on sensory evaluation. Furthermore, the survival of probiotic bacteria in the ice cream, with different levels of PE appeared to be in acceptable limits (107 CFU/g). The findings of the research indicated that the pro-biogenic ice cream has good functionality and incorporating a PE aside probiotic could improve physiochemical and antioxidant characteristics which can be used as a value-added ingredient in the formulation of functional pro-biogenic ice creams.
Collapse
Affiliation(s)
- Mehri Soodbar
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Naheed Mojgani
- Biotechnology DepartmentRazi Vaccine & Serum Research Institute‐Agriculture Research Education and Extension Organization (AREEO)KarajIran
| | - Mohammad Reza Sanjabi
- Agriculture Research InstituteIranian Research Organization for Science and Technology (IROST)TehranIran
| | - Saeed Mirdamadi
- Department of BiotechnologyIranian Research Organization for Science and Technology (IROST)TehranIran
| | - Mostafa Soltani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical ScienceIslamic Azad UniversityTehranIran
| |
Collapse
|
2
|
Gheorghita R, Sirbu IO, Lobiuc A, Covasa M. Sodium Alginate-Starch Capsules for Enhanced Stability of Metformin in Simulated Gastrointestinal Fluids. Biomimetics (Basel) 2024; 9:716. [PMID: 39590288 PMCID: PMC11592180 DOI: 10.3390/biomimetics9110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The use of biopolymers in pharmaceuticals is well established, particularly for encapsulating biologically active compounds due to their beneficial properties. Alginate, widely recognized for its excellent encapsulation abilities, is the most commonly used biopolymer, while starch, typically known as insoluble dietary fiber, also serves as an effective agent for trapping and protecting compounds during processing, storage, and gastrointestinal transit. Sodium alginate-starch capsules with varying compositions were analyzed to develop metformin hydrochloride (MET) containing capsules with adequate physicochemical properties. In vitro testing with simulated gastrointestinal fluids showed that after 1 h, capsules with equal amounts of alginate and starch had a higher swelling ratio and better drug release behavior, despite lower MET entrapment efficiency compared to other formulations. Microstructural analysis revealed stability in simulated gastric fluids and solubility in simulated intestinal fluids, key factors in drug development. The results suggest that these biopolymeric compositions are highly resistant to gastric fluids and minimally soluble in the intestines, making them suitable for extended drug release. This research evaluates key technological parameters of a cost-effective encapsulation method for the controlled release of active substances, providing a versatile solution for pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Department of Biochemistry, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (R.G.); (I.-O.S.)
- The Department of Biological and Morphofunctional Sciences, College of Medicine and Biological Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (R.G.); (I.-O.S.)
- Center for Complex Network Science, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Andrei Lobiuc
- The Department of Biological and Morphofunctional Sciences, College of Medicine and Biological Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- The Department of Biological and Morphofunctional Sciences, College of Medicine and Biological Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
3
|
Karkar B, Şahin S, Yılmaz‐Ersan L, Akça B, Güneş ME, Özakın C. Encapsulation of Lacticaseibacillus casei and Lactobacillus acidophilus using Elaeagnus angustifolia L. flour as encapsulating material by emulsion method. Food Sci Nutr 2024; 12:6810-6825. [PMID: 39554358 PMCID: PMC11561844 DOI: 10.1002/fsn3.4328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, Lacticaseibacillus casei and Lactobacillus acidophilus probiotic bacteria were encapsulated using oleaster flour, which is rich in phenolic compounds and has prebiotic properties as potential. The optimum conditions required for the encapsulation of L. casei and L. acidophilus bacteria with maximum efficiency using oleaster flour were determined by central composite design-response surface methodology. As a result of the optimization process, the encapsulation efficiency for L. casei and L. acidophilus capsules was 93.66 ± 2.58% and 74.97 ± 1.34%, respectively. The capsule sizes of L. casei and L. acidophilus encapsulated with oleaster flour were determined by scanning electron microscopy to be 104.8 ± 26.3 and 95.7 ± 12.1 μm, respectively. Fourier transform infrared spectroscopy analyses showed that there was no change in the structure of the encapsulation material, oleaster flour, after encapsulation. Also, the storage stability of free and encapsulated bacteria was investigated, and it was found that the viability losses of encapsulated probiotic bacteria were less than those of free probiotic bacteria. Finally, the effect of encapsulation on bacterial viability during in vitro gastrointestinal digestion was investigated, which is the main purpose of the study. While free probiotic bacteria cannot reach the intestinal environment alive after in vitro gastrointestinal digestion due to pH and enzyme effects, encapsulated L. casei and L. acidophilus bacteria largely preserved their viability, and their postdigestion viability was 39.59 ± 1.50% and 36.28 ± 0.01%, respectively. The results showed successful encapsulation of L. casei and L. acidophilus probiotic bacteria with oleaster flour.
Collapse
Affiliation(s)
- Büşra Karkar
- Faculty of Science and Arts, Department of ChemistryUniversity of Bursa UludağBursaTürkiye
| | - Saliha Şahin
- Faculty of Science and Arts, Department of ChemistryUniversity of Bursa UludağBursaTürkiye
| | - Lütfiye Yılmaz‐Ersan
- Faculty of Agriculture, Department of Food EngineeringUniversity of Bursa UludağBursaTürkiye
| | - Bekir Akça
- Faculty of Medicine, Department of Medical MicrobiologyUniversity of Bursa UludağBursaTürkiye
| | - Mesut Ertan Güneş
- Vocational School of Technical Sciences, Milk Technology ProgrammeUniversity of Bursa UludağBursaTürkiye
| | - Cüneyt Özakın
- Faculty of Medicine, Department of Medical MicrobiologyUniversity of Bursa UludağBursaTürkiye
| |
Collapse
|
4
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
5
|
Dara A, Naji-Tabasi S, Feizy J, Fooladi E, Rafe A. Exploring the potential utilization of copigmented barberry anthocyanins in ice cream: Focusing on foaming aspects, and melting attributes. Curr Res Food Sci 2024; 9:100811. [PMID: 39139807 PMCID: PMC11321369 DOI: 10.1016/j.crfs.2024.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Anthocyanins have emerged as promising substitutes for synthetic dyes owing to their color profiles, and potential health-boosting properties. The primary aim of this investigation was to assess the impact of copigmented, and un-copigmented barberry anthocyanins, employed at different concentrations (1, 3, and 5% w/w) as colorants in ice cream. The secondary goal was to investigate the influence of barberry anthocyanins on ice cream foaming characteristics, and melting point. The samples' physicochemical, textural, and organoleptic characteristics, total phenolic, and anthocyanin content, and antioxidant activity were determined. By increasing barberry extract concentrations in the samples, the pH levels (5.81) decreased, and overrun increased(30.0 ± 1.15%), respectively. Furthermore, the textural analysis showed that increasing barberry anthocyanins within the ice cream formulation correlated with an increase in sample hardness (113.72 ± 1.34 N). The control sample (vanilla ice cream) had the highest value of melting rate (1.09 ± 0.03 g/min), whereas the specimen containing 5% of copigmented barberry anthocyanins exhibited the lowest rate of melting (0.50 ± 0.01 g/min). The start time of melting of control sample was 1098 s and by increasing the concentration of copigmented barberry anthocyanins from 1 to 5%, this time increased from 1405.2 s to 1831.2 s (P < 0.05). In conclusion, barberry anthocyanins reduced the melting rate as a crucial attribute for ice cream.
Collapse
Affiliation(s)
- Arash Dara
- Department of Green Technologies in Food Production and Processing, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sara Naji-Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Javad Feizy
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ebrahim Fooladi
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ali Rafe
- Department of Food Physics, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
6
|
Ropciuc S, Ghinea C, Leahu A, Prisacaru AE, Oroian MA, Apostol LC, Dranca F. Development and Characterization of New Plant-Based Ice Cream Assortments Using Oleogels as Fat Source. Gels 2024; 10:397. [PMID: 38920943 PMCID: PMC11202521 DOI: 10.3390/gels10060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The objective of this study was to develop candelilla wax oleogels with hemp seed oil and olive oil and use them as a fat source in the development of new plant-based ice cream assortments. Oleogels were structured with 3 and 9% candelilla wax and characterized by oil-binding capacity, peroxide value and color parameters. The oil-binding capacities of 9% wax oleogels were significantly higher than those of 3% wax oleogels, while peroxide values of oleogels decrease with increasing wax dosage. All oleogel samples are yellow-green due to the pigments present in the oils and candelilla wax. Physicochemical (pH, titratable acidity, soluble solids, fat, protein) and rheological (viscosity and viscoelastic modulus) parameters of plant-based ice cream mixes with oleogels were determined. Also, sensory attributes and texture parameters were investigated. The results showed that titratable acidity and fat content of plant-based ice cream samples increased with increasing wax percentage, while pH, soluble solids and protein values are more influenced by the type of plant milk used. The plant-based ice cream sample with spelt milk, hemp oil and 9% candelilla wax received the highest overall acceptability score. The hardness of the plant-based ice cream samples increased as the percentage of candelilla wax added increased.
Collapse
Affiliation(s)
| | - Cristina Ghinea
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.R.); (A.L.); (A.E.P.); (M.A.O.); (L.C.A.); (F.D.)
| | | | | | | | | | | |
Collapse
|
7
|
Wu H, Ding C, Ma X, Gao Z, Liu S, Liu B, Song S. Microencapsulate Probiotics (MP) Promote Growth Performance and Inhibit Inflammatory Response in Broilers Challenged with Salmonella typhimurium. Probiotics Antimicrob Proteins 2024; 16:623-635. [PMID: 37043165 DOI: 10.1007/s12602-023-10074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/13/2023]
Abstract
Antibiotic-resistant bacteria are prevalent in husbandry around the world due to the abuse of antibiotic growth promoters (AGPs); therefore, it is necessary to find alternatives to AGPs in animal feed. Among all the candidates, probiotics are promising alternatives to AGPs against Salmonella infection. The anti-Salmonella effects of three probiotic strains, namely, Lactobacillus crispatus 7-4, Lactobacillus johnsonii 3-1, and Pediococcus acidilactici 20-1, have been demonstrated in our previous study. In this study, we further obtained the alginate beads containing compound probiotics, namely, microencapsulate probiotics (MP), and evaluated its regulatory effect on the health of broilers. We incubated free and microencapsulate probiotics in simulated gastric and intestinal juice for 2 h, and the results showed that compared to free probiotics, encapsulation increased tolerance of compound probiotics in the simulated gastrointestinal condition. We observed that the application of probiotics, especially MP, conferred protective effects against Salmonella typhimurium (S.Tm) infection in broilers. Compared to the S.Tm group, the MP could promote the growth performance (p < 0.05) and reduce the S.Tm load in intestine and liver (p < 0.05). In detail, MP pretreatment could modulate the cecal microflora and upregulate the relative abundance of Lactobacillus and Enterobacteriaceae. Besides, MP could reduce the inflammation injury of the intestine and liver, reduce the pro-inflammatory cytokines (IL-6, TNF-α, IL-1β) expression, and induce of anti-inflammatory cytokine (IL-10) expression. Furthermore, MP could inhibit NLRP3 pathway in ileum, thereby attenuating S.Tm-induced inflammation. In conclusion, MP could be a new feeding supplementation strategy to substitute AGPs in poultry feeding.
Collapse
Affiliation(s)
- Huixian Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xujie Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Liu
- Management Office of Dafeng, Milu National Nature Reserve, Yancheng, 224136, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Vanaki E, Kamkar A, Noori N, Azizian A, Mohammadkhan F. The effect of aqueous extract of Arctium lappa root on the survival of Lactobacillus acidophilus La-5 and Bifidobacterium bifidum Bb-12 and sensorial and physicochemical properties of synbiotic yogurt. Food Sci Nutr 2024; 12:2182-2191. [PMID: 38455177 PMCID: PMC10916564 DOI: 10.1002/fsn3.3919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 03/09/2024] Open
Abstract
The effect of aqueous extract of Arctium lappa root (ALE) on the survival of Lactobacillus acidophilus La-5 and Bifidobacterium bifidum Bb-12 probiotic bacteria and sensory and physicochemical properties of synbiotic yogurt was evaluated during 4 weeks storage at 4°C. According to this study, using 0.5% and 1% ALE significantly affected the survival of La-5 and Bb-12 during storage. The results showed that 1% of ALE counting of La-5 and Bb-12 has been reached from 6.96 and 8.14 Log CFU/g to 7.3 and 7.30 Log CFU/g after 28 days of storage. Moreover, adding 1% ALE to yogurt enhanced antioxidant activity and phenolic content to 1299.8 mg gallic acid/kg and 392.8 mg BHT eq./kg compared with the control (without extract) after storage, respectively. In general, in yogurt containing ALE, a decrease in Syneresis, undesirable changes in taste, texture, and appearance, and reduced overall acceptances were observed compared to the control. In conclusion, using this prebiotic compound (ALE) can improve nutritional properties and probiotic protection in yogurt during long time storage; thus, it is a good choice for application in the dairy industry.
Collapse
Affiliation(s)
- Elmira Vanaki
- Department of Food Hygiene & Control, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Abolfazl Kamkar
- Department of Food Hygiene & Control, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Negin Noori
- Department of Food Hygiene & Control, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Asghar Azizian
- Department of Food Hygiene & Control, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Fatemeh Mohammadkhan
- Department of Food Hygiene & Control, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
9
|
Wang A, Zhong Q. Drying of probiotics to enhance the viability during preparation, storage, food application, and digestion: A review. Compr Rev Food Sci Food Saf 2024; 23:e13287. [PMID: 38284583 DOI: 10.1111/1541-4337.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Functional food products containing viable probiotics have become increasingly popular and demand for probiotic ingredients that maintain viability and stability during processing, storage, and gastrointestinal digestions. This has resulted in heightened research and development of powdered probiotic ingredients. The aim of this review is to overview the development of dried probiotics from upstream identification to downstream applications in food. Free probiotic bacteria are susceptible to various environmental stresses during food processing, storage, and after ingestion, necessitating additional materials and processes to preserve their activity for delivery to the colon. Various classic and emerging thermal and nonthermal drying technologies are discussed for their efficiency in preparing dehydrated probiotics, and strategies for enhancing probiotic survival after dehydration are highlighted. Both the formulation and drying technology can influence the microbiological and physical properties of powdered probiotics that are to be characterized comprehensively with various techniques. Furthermore, quality control during probiotic manufacturing and strategies of incorporating powdered probiotics into liquid and solid food products are discussed. As emerging technologies, structure-design principles to encapsulate probiotics in engineered structures and protective materials with improved survivability are highlighted. Overall, this review provides insights into formulations and drying technologies required to supplement viable and stable probiotics into functional foods, ensuring the retention of their health benefits upon consumption.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
- International Flavors and Fragrances, Palo Alto, California, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Ozcan T, Eroglu E. In vitro fermentation assay on the bifidogenic effect of steviol glycosides of Stevia rebaudiana plant for the development of dietetic novel products. Prep Biochem Biotechnol 2023; 53:1099-1108. [PMID: 36709420 DOI: 10.1080/10826068.2023.2169935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The relationship between excessive sugar consumption and many diseases such as dental caries, obesity, diabetes and coronary heart has been increasing in recent years. In this study, utilization of natural sugar replacer steviol glycosides and bifidogenic effect by Bifidobacterium animalis subsp. lactis was assayed in vitro model system. The basal medium (non-carbohydrate containing MRS, Man, Rogosa and Sharpe Agar) were supplemented with 0.025% and 1% stevia, 0.025% stevia + 1% inulin, %1 stevia + 1% inulin. The medium which contained no carbohydrate was designated as negative control, whereas the medium containing 1% glucose or inulin were evaluated as positive and evaluated on the 0, 12, 24, 36 and 48 h of fermentation. Steviol glycosides in both system significantly stimulated the growth of Bifidobacterium animalis subsp. lactis to varying degrees with highest prebiotic activity score, short chain fatty acid production and growth parameters as much as glucose and prebiotic inulin. The viability of the probiotic bacteria was determined within the bio-therapeutic level with potential prebiotic effects depending on the probiotic bacterial strain growing and the type of carbohydrate source utilized. In the study, stevia at lower concentration showed a higher growth rate of with inulin. In conclusion, stevia can be used as functional ingredients for the modulation of the gut microbiota and design of synbiotic systems as a prebiotic substrate and sugar substitute.
Collapse
Affiliation(s)
- Tulay Ozcan
- Faculty of Agriculture, Department of Food Engineering, Bursa Uludag University, Bursa, Turkey
| | - Ezgi Eroglu
- Republic of Turkey Ministry of Agriculture and Forestry, Hafik, Sivas, Turkey
| |
Collapse
|
11
|
Shamshad A, Iahtisham‐Ul‐Haq, Butt MS, Nayik GA, Al Obaid S, Ansari MJ, Karabagias IK, Sarwar N, Ramniwas S. Effect of storage on physicochemical attributes of ice cream enriched with microencapsulated anthocyanins from black carrot. Food Sci Nutr 2023; 11:3976-3988. [PMID: 37457183 PMCID: PMC10345707 DOI: 10.1002/fsn3.3384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023] Open
Abstract
The present study was conducted to investigate the effect of storage on quality attributes of microencapsulated black carrot anthocyanins-enriched ice cream. Purposely, black carrot anthocyanins were obtained using ethanolic extraction. Later on, extracts were acidified and microencapsulated with gum arabic and maltodextrin (1:1). Results showed that anthocyanin contents for T3 (9% microencapsulated anthocyanins powder-enriched ice cream) had highest anthocyanin contents in the range of 143.21 ± 1.14 mg/100 g. However, during the storage, it was revealed that there was a slight decline in constituents concentration reasoned to oxygen exposure and interaction with other food ingredients. Similarly, for total phenolic content, the highest amount was found in T3 as 545.38 ± 4.34 mg GAE/100 g. The quality attributes of prepared ice cream treatments were also found acceptable till the end of the study (60 days). Conclusively, the addition of microencapsulated anthocyanins powder in ice cream proved to stabilize black carrot anthocyanins and contributed positively to the sensory characteristics of ice cream.
Collapse
Affiliation(s)
- Aneela Shamshad
- National Institute of Food Science and TechnologyFaculty of FoodNutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Iahtisham‐Ul‐Haq
- Kauser Abdulla Malik School of Life SciencesForman Christian College (A Chartered University)LahorePakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and TechnologyFaculty of FoodNutrition and Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Gulzar Ahmad Nayik
- Department of Food Science and TechnologyGovernment Degree College ShopianJammu and KashmirIndia
| | - Sami Al Obaid
- Department of Botany and MicrobiologyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohammad Javed Ansari
- Department of BotanyHindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly)MoradabadIndia
| | | | - Nazmul Sarwar
- Department of Food Processing and EngineeringChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - Seema Ramniwas
- University Centre for Research and DevelopmentChandigarh UniversityGharuan, MohaliIndia
| |
Collapse
|
12
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
13
|
Maleki O, Khosrowshahi Asl A, Alizadeh Khaledabad M, Amiri S. Production and characterization of synbiotic ice cream using microencapsulation and cryopreservation of Lactobacillus rhamnosus in whey protein/bio-cellulose/inulin composite microcapsules. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
14
|
Kalpa RE, Sreejit V, Preetha R, Nagamaniammai G. Synbiotic microencapsulation of Lactobacillus brevis and Lactobacillus delbrueckii subsp. lactis using oats/oats brans as prebiotic for enhanced storage stability. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:896-905. [PMID: 36908354 PMCID: PMC9998750 DOI: 10.1007/s13197-021-05240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Potential probiotic strains, Lactobacillus delbrueckii subsp. lactis and Lactobacillus brevis were microencapsulated with their appropriate prebiotics, oat bran, and oats, respectively, selected by in vitro fermentation. The microencapsulation of these probiotics were done in an alginate matrix, with and without their appropriate prebiotics. Results showed that cells microencapsulated with the prebiotics had significantly more storage stability (p < 0.05) than free cells and cells microencapsulated without the prebiotics. The probiotic cells encapsulated with their appropriate prebiotic had improved survival rates when exposed to bile as compared to free cells. The survival of microencapsulated and free cells in the simulated gastric fluid and simulated intestinal fluid was also evaluated in this study. Microencapsulated probiotics, along with an appropriate prebiotic, were found to be more stable in bile, simulated gastric fluid and simulated intestinal fluid. Interestingly, this is the first work to use prebiotic such as oats and the oat bran to prepare the synbiotic microsphere.
Collapse
Affiliation(s)
- R. E. Kalpa
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - V. Sreejit
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - R. Preetha
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - G. Nagamaniammai
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| |
Collapse
|
15
|
Bisson G, Maifreni M, Innocente N, Marino M. Application of pre-adaptation strategies to improve the growth of probiotic lactobacilli under food-relevant stressful conditions. Food Funct 2023; 14:2128-2137. [PMID: 36745384 DOI: 10.1039/d2fo03215e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
While formulating a probiotic food, it is mandatory to make sure that the viability of probiotics is adequate at the point of consumption, which can be strongly compromised by stressful conditions due to low pH and high osmolarity. In this study, three probiotic lactobacilli were subjected to different pre-adaptation conditions, and the turbidimetric growth kinetics in challenging conditions (pH 4.0-6.5, NaCl 1-7%, sucrose 0.1-0.7 M) were evaluated. Different effects were observed for Lactobacillus acidophilus, Lacticaseibacillus casei, and Lactiplantibacillus plantarum. Indeed, pre-exposition to sub-optimal conditions in terms of pH and % NaCl significantly improved the ability of L. acidophilus and L. casei to overcome the osmotic stress due to salt or sucrose, and similar effects were observed for acidic stress. L. plantarum showed to be more tolerant to the challenging conditions applied in this study. Anyway, the pre-adaptation at conditions SUB_1 (pH 4.5 and NaCl 4%) and SUB_2 (pH 5 and NaCl 2%) speeded-up its growth kinetics by reducing the length of the lag phase under sucrose stress and enhancing the maximum growth rate at the highest pH tested. Moreover, an improvement in biomass amount was observed under sucrose stress. The whole data evidenced that the application of the appropriate pre-adaptation condition could contribute to making probiotics more robust towards challenging conditions due to food matrix, processing, and storage as well as gastrointestinal transit. Further studies will be necessary to gain insight into the proteomics and metabolomics responsible for increased tolerance to stressful conditions.
Collapse
Affiliation(s)
- Giulia Bisson
- Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Michela Maifreni
- Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Nadia Innocente
- Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Marilena Marino
- Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
16
|
Afzaal M, Saeed F, Ateeq H, Imran A, Yasmin I, Shahid A, Javed A, Shah YA, Islam F, Ofoedu CE, Chacha JS, Awuchi CG. Survivability of probiotics under hostile conditions as affected by prebiotic-based encapsulating materials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Iqra Yasmin
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Abdulrehman Shahid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ahsan Javed
- Department of Food Science & Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Yasir Abbas Shah
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, Nigeria
| | - James S. Chacha
- Department of Food Science and Agro-processing, School of Engineering and Technology, Sokoine University of Agriculture, Morogoro, Tanzania
| | | |
Collapse
|
17
|
Tyutkov N, Zhernyakova A, Birchenko A, Eminova E, Nadtochii L, Baranenko D. Probiotics viability in frozen food products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chem Biol Interact 2022; 368:110223. [DOI: 10.1016/j.cbi.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
19
|
Mohammed NK, Badrul Khair MF, Ahmad NH, Meor Hussin AS. Ice cream as functional food: A review of health‐promoting ingredients in the frozen dairy products. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Nurul Hawa Ahmad
- Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Serdang Malaysia
| | - Anis Shobirin Meor Hussin
- Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
20
|
Łętocha A, Miastkowska M, Sikora E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers (Basel) 2022; 14:polym14183834. [PMID: 36145992 PMCID: PMC9502979 DOI: 10.3390/polym14183834] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics. Here, we report the methods most frequently used for AMP production and encapsulation of different actives. The technological parameters important in the process of AMP preparation, such as alginate concentration, the type and concentration of other reagents (cross-linking agents, oils, emulsifiers and pH regulators), agitation speed or cross-linking time, are reviewed. Furthermore, the advantages and disadvantages of alginate microparticles as delivery systems are discussed, and an overview of the active ingredients enclosed in the alginate carriers are presented.
Collapse
|
21
|
Tian S, Xue X, Wang X, Chen Z. Preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics. Front Nutr 2022; 9:982370. [PMID: 36046140 PMCID: PMC9421261 DOI: 10.3389/fnut.2022.982370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Most of the functional substances in food are absorbed in the small intestine, but before entering the small intestine, the strong acid and enzymes in the stomach limit the amount that can reach the small intestine. Therefore, in this paper, to develop a delivery system for functional food ingredients, maintain the biological activity of the ingredients, and deliver them to the target digestive organs, preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics were reviewed. Embedding unstable food active ingredients in starch-based nano-microcapsules can give the core material excellent stability and certain functional effects. Starch-based wall materials refer to a type of natural polymer material that uses starch or its derivatives to coat fat-soluble components with its hydrophobic cavities. The preparation methods of starch-based wall materials mainly include spray drying, extrusion, freeze drying, ultra-high pressure, coagulation, fluidized bed coating, molecular inclusion, chemical, and enzymic methods. The controlled release of functional food can be achieved by preparing starch-based nano-microcapsules to encapsulate the active agents. It has been reported that that compared with traditional embedding agents such as gelatin, acacia gum, and xanthan gum, starch-based functional food nano-microcapsule delivery system had many good properties, including improving antioxidant capacity, bioavailability, probiotics, and concealing bad flavors. From this review, we can learn which method should be chosen to prepare starch-based functional food nano-microcapsule delivery system and understand the mechanism of controlled release.
Collapse
Affiliation(s)
- Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing'ao Xue
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
22
|
The effect of probiotics on mood and sleep quality in postmenopausal women: A triple-blind randomized controlled trial. Clin Nutr ESPEN 2022; 50:15-23. [DOI: 10.1016/j.clnesp.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|
23
|
Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Kraithong S, Wang S, Junejo SA, Fu X, Theppawong A, Zhang B, Huang Q. Type 1 resistant starch: Nutritional properties and industry applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Arepally D, Reddy RS, Goswami TK, Coorey R. A Review on Probiotic Microencapsulation and Recent Advances of their Application in Bakery Products. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02796-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
27
|
Abstract
Environmentally friendly alternatives have become sought after upon the development of scientific research and industrial processes. Recent trends suggest biodegradable polymers as the most promising solution for synthetic microcapsule systems. Safety, efficiency, biocompatibility, and biodegradability are some of the properties that biodegradable systems in microencapsulation can provide for a broad spectrum of applications. The controlled release of encapsulated active agents is a research field that, over the years, has been constantly innovating due to the promising applications in the areas of pharmaceutical, cosmetic, textile industry, among others. This article presents an overview of different polymers with potential for microcapsule synthesis, namely, biodegradable polymers. First, natural polymers are discussed, which are divided into two categories: polysaccharide-based polymers (cellulose, starch, chitosan, and alginate) and protein polymers (gelatin). Second, synthetic polymers are described, where biodegradable polymers such as polyesters, polyamides, among others appear as examples. For each polymer, this review presents its origin, relevant properties, applications, and examples found in the literature regarding its use in biodegradable microencapsulation systems.
Collapse
|
28
|
Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. FOOD BIOPROCESS TECH 2022; 15:998-1039. [PMID: 35126801 PMCID: PMC8800850 DOI: 10.1007/s11947-021-02753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
From the past few decades, consumers' demand for probiotic-based functional and healthy food products is rising exponentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health benefits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough discussion of novel processing technologies and applications in food products with the incorporation of recent research works is the novelty and highlight of this review paper.
Collapse
Affiliation(s)
- Sourav Misra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| |
Collapse
|
29
|
POURJAVID H, ATAEI M, POURAHMAD R, ANVAR AA, BEHMADI H. Improvement of the quality parameters of a novel synbiotic yogurt sauce using microencapsulated Lactobacillus paracasei and natural prebiotics. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Homa BEHMADI
- Agricultural Research, Education and Extension Organization – AREEO, Iran
| |
Collapse
|
30
|
Shori AB. Application of Bifidobacterium spp in beverages and dairy food products: an overview of survival during refrigerated storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Mirmazloum I, Ladányi M, Omran M, Papp V, Ronkainen VP, Pónya Z, Papp I, Némedi E, Kiss A. Co-encapsulation of probiotic Lactobacillus acidophilus and Reishi medicinal mushroom (Ganoderma lingzhi) extract in moist calcium alginate beads. Int J Biol Macromol 2021; 192:461-470. [PMID: 34600952 DOI: 10.1016/j.ijbiomac.2021.09.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Probiotic L. acidophilus La-14 cells were co-encapsulated with Ganoderma lingzhi extract to prolong the viability of the cells under simulated gastrointestinal (SGI) condition and to protect the active ingredients of Reishi mushroom during the storage period. Combinations of distinctive reagents (sodium alginate, chitosan, maltose, Hydroxyethyl-cellulose (HEC), hydroxypropyl methylcellulose (HPMC), and calcium lactate) were tested. Optimal double layer Ca-alginate hydrogel beads were fabricated with significantly improved characteristics. The incorporation of maltose significantly decreases the release rate of mushrooms' phenolics, antioxidants, and β-glucan during the storage time. Significant improvement in probiotic cells viability under SGI condition has been found and confirmed by confocal laser microscopy in maltose containing double layer coated calcium alginate beads variants. The encapsulation of newly formulated prebiotic Reishi extract and probiotic L. acidophilus is creating a new potential food application for such medicinal mushrooms and natural products with unpleasant taste upon oral consumption.
Collapse
Affiliation(s)
- Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary.
| | - Márta Ladányi
- Department of Applied Statistics, Institute of Mathematics and Basic Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mohammad Omran
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Viktor Papp
- Department of Botany, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Zsolt Pónya
- Division of Applied Food Crop Production, Department of Agronomy, Institute of Agronomy, Kaposvár Campus, Hungarian University of Agricultural and Life Sciences, Kaposvár, Hungary
| | - István Papp
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro-, Food- and Environmental Science, Debrecen University, Debrecen, Hungary
| |
Collapse
|
32
|
Ghorbani S, Maryam A. Encapsulation of lactic acid bacteria and Bifidobacteria using starch‐sodium alginate nanofibers to enhance viability in food model. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sahel Ghorbani
- Department of Food Hygiene Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol Iran
| | - Azizkhani Maryam
- Department of Food Hygiene Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol Iran
| |
Collapse
|
33
|
Nisar T, Alim A, Iqbal T, Iqbal M, Tehseen S, Zi‐Chao W, Guo Y. Functionality of different probiotic strains embedded in citrus pectin based edible films. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tanzeela Nisar
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an 710062 China
- Department of Food Science and Technology Government College Women University Faisalabad Punjab 38000 Pakistan
- Faculty of Rehabilitation and Allied Health Sciences (FRAHS) Riphah International University Lahore Punjab 54000 Pakistan
| | - Aamina Alim
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an 710062 China
| | - Taimoor Iqbal
- University of Engineering and Technology Lahore Lahore Punjab 54890 Pakistan
| | - Muneeb Iqbal
- Faculty of Rehabilitation and Allied Health Sciences (FRAHS) Riphah International University Lahore Punjab 54000 Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology Government College Women University Faisalabad Punjab 38000 Pakistan
| | - Wang Zi‐Chao
- College of Life Science Qinghai Normal University Xining Qinghai 810099 China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an 710062 China
| |
Collapse
|
34
|
Bisson G, Marino M, Poletti D, Innocente N, Maifreni M. Turbidimetric definition of growth limits in probiotic Lactobacillus strains from the perspective of an adaptation strategy. J Dairy Sci 2021; 104:12236-12248. [PMID: 34600710 DOI: 10.3168/jds.2021-20888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022]
Abstract
The application of an adaptation strategy for probiotics, which may improve their stress tolerance, requires the identification of the growth range for each parameter tested. In this study, 4 probiotics (Lactobacillus acidophilus, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, and Lactiplantibacillus plantarum) were grown under different pH, NaCl, and sucrose concentrations at 25°C, 30°C, and 37°C. Turbidimetric growth curves were carried out and lag phase duration, maximum growth rate, and amplitude (i.e., the difference between initial and stationary phase optical density) were estimated. Moreover, cell morphology was observed, and cell length measured. The growth response, as well as the morphological changes, were quite different within the 4 species. The L. acidophilus was the most sensitive strain, whereas L. plantarum was shown to better tolerate a wide range of stressful conditions. Frequently, morphological changes occurred when the growth curve was delayed. Based on the results, ranges of environmental parameters are proposed that can be considered suboptimal for each strain, and therefore could be tested. The quantitative evaluation of the growth kinetics as well as the morphological observation of the cells can constitute useful support to the choice of the parameters to be used in an adaptation strategy, notwithstanding the need to verify the effect on viability both in model systems and in foods.
Collapse
Affiliation(s)
- Giulia Bisson
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Marilena Marino
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Denise Poletti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Nadia Innocente
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Michela Maifreni
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| |
Collapse
|
35
|
Gocer EMC, Ergin F, Kücükcetin IO, Kücükcetin A. In vitro gastrointestinal resistance of Lactobacillus acidophilus in some dairy products. Braz J Microbiol 2021; 52:2319-2334. [PMID: 34487329 DOI: 10.1007/s42770-021-00590-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, different dairy products such as ice cream, yoghurt, white pickled cheese, and fermented acidophilus milk were manufactured by using either Lactobacillus acidophilus DSM 20,079 or Lactobacillus acidophilus NCFM. The counts of L. acidophilus in the samples on days 1, 15, and 30 of the storage were determined. Additionally, the samples contained L. acidophilus were passed through a dynamic gastrointestinal model designed in laboratory conditions to compare the protective effect of different dairy products on viability of L. acidophilus against stress factors of the gastrointestinal model. The counts of L. acidophilus NCFM and L. acidophilus DSM 20,079 in the samples decreased by between 0.04 and 0.37 log units and by between 0.11 and 0.27 log units, respectively, within 30 days of storage. During the passage through the gastrointestinal model, the highest percentage reduction in the counts of L. acidophilus was determined in yoghurt followed by fermented acidophilus milk, white pickled cheese, and ice cream, respectively. The reduction in the counts of L. acidophilus in the samples during the passage through the model increased with extension of storage time. The results of this study showed that the reduction in the counts L. acidophilus in the samples during the passage through the model was influenced significantly by the matrix of the dairy product and storage period.
Collapse
Affiliation(s)
- Emine Mine Comak Gocer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Firuze Ergin
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Dumlupinar Boulevard, Campus, 07058, Antalya, Turkey
| | - Ikbal Ozen Kücükcetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Ahmet Kücükcetin
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Dumlupinar Boulevard, Campus, 07058, Antalya, Turkey.
| |
Collapse
|
36
|
Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers (Basel) 2021; 13:2729. [PMID: 34451268 PMCID: PMC8399127 DOI: 10.3390/polym13162729] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
Research regarding the use of biopolymers has been of great interest to scientists, the medical community, and the industry especially in recent years. Initially used for food applications, the special properties extended their use to the pharmaceutical and medical industries. The practical applications of natural drug encapsulation materials have emerged as a result of the benefits of the use of biopolymers as edible coatings and films in the food industry. This review highlights the use of polysaccharides in the pharmaceutical industries and as encapsulation materials for controlled drug delivery systems including probiotics, focusing on their development, various applications, and benefits. The paper provides evidence in support of research studying the use of biopolymers in the development of new drug delivery systems, explores the challenges and limitations in integrating polymer-derived materials with product delivery optimization, and examines the host biological/metabolic parameters that can be used in the development of new applications.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Liliana Anchidin-Norocel
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
| | - Roxana Filip
- Hipocrat Clinical Laboratory, 720003 Suceava, Romania;
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
37
|
Atraki R, Azizkhani M. Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Ansari F, Alian Samakkhah S, Bahadori A, Jafari SM, Ziaee M, Khodayari MT, Pourjafar H. Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit Rev Food Sci Nutr 2021; 63:457-485. [PMID: 34254862 DOI: 10.1080/10408398.2021.1949577] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Saccharomyces cerevisiae var. boulardii (S. boulardii) has been isolated from lychee (Litchi chinensis), mangosteen fruit, kombucha, and dairy products like kefir. Dairy products containing S. boulardii have been revealed to possess potential probiotic activities owing to their ability to produce organic acids, essential enzymes, vitamins, and other important metabolites such as vanillic acid, phenyl ethyl alcohol, and erythromycin. S. boulardii has a wide spectrum of anti-carcinogenic, antibacterial antiviral, and antioxidant activity, and is known to reduce serum cholesterol levels. However, this yeast has mainly been prescribed for prophylaxis treatment of gastrointestinal infectious diseases, and stimulating the immune system in a number of commercially available products. The present comprehensive review article reviews the properties of S. boulardii related to their use in fermented dairy foods as a probiotic microorganism or starter culture. Technical aspects regarding the integration of this yeast into the dairy foods matrix its health advantages, therapeutic functions, microencapsulation, and viability in harsh conditions, and safety aspects are highlighted.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.,Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Seyedeh Maedeh Jafari
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Hadi Pourjafar
- Alborz University of Medical Sciences, Dietary Supplements and Probiotic Research Center, Karaj, Iran.,Department of Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
39
|
Chakravarty A, Tandon M, Attri S, Sharma D, Raigond P, Goel G. Structural characteristics and prebiotic activities of resistant starch from Solanum tuberosum: Kufri Bahar, a popular Indian tuber variety. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Szołtysik M, Kucharska AZ, Dąbrowska A, Zięba T, Bobak Ł, Chrzanowska J. Effect of Two Combined Functional Additives on Yoghurt Properties. Foods 2021; 10:1159. [PMID: 34064052 PMCID: PMC8224028 DOI: 10.3390/foods10061159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the research was the analysis of yoghurts enriched with blue honeysuckle berries dry polyphenolic extract and new preparation of resistant starch. The additives were introduced individually at concentration 0.1% (w/v) and in mixture at final concentration of 0.1 and 0.2% of both components. Yogurt microflora, pH, and its physicochemical and antioxidant properties were examined over 14 days of storage under refrigerated conditions. Studies showed that both substances can be successfully used in yoghurt production. Yoghurt microflora es. S. thermophilus and Lb. delbrueckii subsp. bulgaricus counts appeared to be higher in samples supplemented with these additives comparing to control yoghurt by 3-8%. More stimulating effect on their growth, especially on S. thermophilus, revealed resistant starch. Addition of this polysaccharide improved also the rheological properties of yogurts, which showed higher viscosity than samples produced without it. Addition of honeysuckle berries preparation significantly influenced the yogurts' color, giving them deep purple color, and their antioxidant potential. During storage, contents of anthocyanin and iridoid compounds were decreasing, but antioxidant activity in the products remained stable.
Collapse
Affiliation(s)
- Marek Szołtysik
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Anna Dąbrowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Józefa Chrzanowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| |
Collapse
|
41
|
Effect of various encapsulating agents on the beads' morphology and the viability of cells during BB-12 encapsulation through extrusion. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Kowalczyk M, Znamirowska A, Buniowska M. Probiotic Sheep Milk Ice Cream with Inulin and Apple Fiber. Foods 2021; 10:foods10030678. [PMID: 33810192 PMCID: PMC8004860 DOI: 10.3390/foods10030678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of the study was to assess the effect of the addition of inulin and the replacement of part of the inulin with apple fiber on the physicochemical and organoleptic properties of ice cream. Moreover, the survival of Bifidobacterium animalis ssp. Lactis Bb-12 and Lactobacillus rhamnosus was studied in sheep milk ice cream. There was no effect of the apple fiber and the type of bacteria on the number of bacteria in the probiotics after fermentation. As a result of freezing, in the mixture containing Bifidobacterium animalis ssp. Lactis Bb-12, there was a significant reduction in the bacteria from 0.39 log cfu g-1 to 0.46 log cfu g-1. In all of the ice cream on the 21st day of storage, it exceeded 10 log cfu g-1, which means that the ice cream retained the status of a probiotic product. The Lactobacillus rhamnosus ice cream showed a lower yellow color compared to the Bifidobacterium Bb-12 ice cream. The overrun of the sheep's milk ice cream was within the range of 78.50% to 80.41%. The appearance of the sheep's milk ice cream is influenced significantly by the addition of fiber and the type of bacteria and the interaction between the type of bacteria and the addition of fiber, and storage time and fiber.
Collapse
|
43
|
ACU M, KINIK O, YERLIKAYA O. Probiotic viability, viscosity, hardness properties and sensorial quality of synbiotic ice creams produced from goat’s milk. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.39419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Merve ACU
- Izmir Food Control Laboratory Directorate, Turkey
| | | | | |
Collapse
|
44
|
Nascimento RDPD, Marostica Junior MR. Emerging Prebiotics: Nutritional and Technological Considerations. PROBIOTICS AND PREBIOTICS IN FOODS 2021:13-46. [DOI: 10.1016/b978-0-12-819662-5.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Hayayumi-Valdivia M, Márquez-Villacorta LF, Pretell-Vásquez CC. Effect of microencapsulation and mango peel powder on probiotics survival in ice cream. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.30919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract This study evaluated the effect of microencapsulation and addition of mango peel powder on the survival of Lactobacillus acidophilus and Bifidobacterium lactis, overrun, apparent viscosity, and overall acceptability of symbiotic ice cream during storage at -20 °C for 180 days. Six formulations of vanilla-flavored ice cream were prepared: three with addition of probiotic cultures at a concentration of 108 CFU/g and 0, 2%, and 3% mango peel powder microencapsulated in a sodium alginate matrix, and three with free addition. Analytical evaluations were performed after 1, 30, 60, 90, 120 and 180 days of storage. The results showed that microencapsulation of probiotics and prebiotics statistically influenced (p < 0.05) the characteristics evaluated. The formulation with microencapsulated probiotics and 2% mango peel powder was considered as the best product. This formulation is promising for future commercial application as a functional food because, at the end 180 days of storage, it showed probiotics population >106 CFU/g, 72.97% overrun, 292 mPA apparent viscosity, and good overall acceptance (7.6 points) equivalent to “I like it very much”.
Collapse
|
46
|
Vijay S, Vikraman S, Mary PR, Chauhan AS, Kapoor M. Osmotic infusion of
Lactiplantibacillus plantarum
and
Lacticaseibacillus casei
in cut pineapple matrix: Optimization, survival under gastrointestinal stress, and storage stability studies. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Silpa Vijay
- Department of Protein Chemistry and Technology CSIR‐Central Food Technological Research Institute Mysuru India
| | - Sruthi Vikraman
- Department of Protein Chemistry and Technology CSIR‐Central Food Technological Research Institute Mysuru India
| | - Priyanka Rose Mary
- Department of Protein Chemistry and Technology CSIR‐Central Food Technological Research Institute Mysuru India
- Academy of Scientific and Innovative Research (AcSIR) CSIR‐Human Resource Development Centre (CSIR‐HRDC) Campus Ghaziabad UP India
| | - Attar Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR) CSIR‐Human Resource Development Centre (CSIR‐HRDC) Campus Ghaziabad UP India
- Department of Fruit and Vegetable Technology CSIR‐Central Food Technological Research Institute Mysuru India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology CSIR‐Central Food Technological Research Institute Mysuru India
- Academy of Scientific and Innovative Research (AcSIR) CSIR‐Human Resource Development Centre (CSIR‐HRDC) Campus Ghaziabad UP India
| |
Collapse
|
47
|
Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, Jafari SM. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr 2020; 62:2470-2494. [PMID: 33251846 DOI: 10.1080/10408398.2020.1854169] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral administration of live probiotics along with prebiotics has been suggested with numerous beneficial effects for several conditions including certain infectious disorders, diarrheal illnesses, some inflammatory bowel diseases, and most recently, irritable bowel syndrome. Though, delivery of such viable bacteria to the host intestine is a major challenge, due to the poor survival of the ingested probiotic bacteria during the gastric transit, especially within the stomach where the pH is highly acidic. Although microencapsulation has been known as a promising approach for improving the viability of probiotics in the human digestive tract, the success rate is not satisfactory. For this reason, co-encapsulation of probiotics with probiotics has been practised as a novel alternative approach for further improvement of the oral delivery of viable probiotics toward their targeted release in the host intestine. This paper discusses the co-encapsulation technologies used for delivery of probiotics toward better stability and viability, as well the incorporation of co-encapsulated probiotics and prebiotics in functional/synbiotic dairy foods. The common encapsulation technologies (and the materials) used for this purpose, the stability and survival of co-encapsulated probiotics in the food, and the release behavior of the co-encapsulated probiotics in the gastrointestinal tract have also been explained. Most studies reported a significant improvement particularly in the viability of bacteria associated with the presence of prebiotics. Nevertheless, the previous research has mostly been carried out in the simulated digestion, meaning that future systematic research is to be carried out to investigate the efficacy of the co-encapsulation on the survival of the bacteria in the gut in vivo.
Collapse
Affiliation(s)
- Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Akbar Bahrami
- Program of Applied Science and Technology, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Babazadeh
- Center for Motor Neuron Disease Research, Faculty of medicine, health and human sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
48
|
Abbasalizadeh S, Ebrahimi B, Azizi A, Dargahi R, Tayebali M, Ghadim ST, Foroumandi E, Aliasghari F, Javadi M, Izadi A, Banifatemeh L, Pourjafar H, Khalili L, Ghalichi F, Houshmandi S, Rad AH. Review of Constipation Treatment Methods with Emphasis on Laxative Foods. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666191002164336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constipation is a common public health concern experienced by all individuals during
their life affecting the quality of life. In this paper, we aimed to provide an overview of the existing
evidence regarding the role of food ingredients, including bran, prune, fig, kiwifruit, and flax-seed in
constipation treatment. We searched Scopus, Pub Med, and Science Direct by using the keywords,
“laxative foods” and “constipation”, for searching studies assessing laxative food ingredients and
their beneficial effects on constipation treatment and/or control. Lifestyle modifications such as increasing
dietary fiber and fluid intake and daily exercise are the proposed first line treatments for
constipation. Optimizing ‘diet’ as an efficient lifestyle factor may contribute to the well-being of patients.
The use of laxative food ingredients including bran, prune, fig, kiwifruit, flax-seed, probiotics,
and prebiotics is a convenient alternative to cope with constipation. According to previous findings,
laxative food ingredients could be considered as effective treatments for subjects suffering from constipation.
Many studies have assessed the pharmacological and non-pharmacological roles of these
ingredients in treating constipation, however, their importance has not been thoroughly investigated.
Collapse
Affiliation(s)
- Shamsi Abbasalizadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Aslan Azizi
- Agricultural Engineering Research Institute, Ministry of Jihad Agriculture, Karaj, Iran
| | - Rogaye Dargahi
- Obstetrics and Gynecology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Tayebali
- Department of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Sepideh T. Ghadim
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Foroumandi
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
| | - Fereshteh Aliasghari
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Javadi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azimeh Izadi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Banifatemeh
- Department of Food Science & Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Leila Khalili
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Ghalichi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sousan Houshmandi
- Faculty of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz H. Rad
- Department of Food Science & Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Afzaal M, Saeed F, Arshad MU, Nadeem MT, Saeed M, Tufail T. The Effect of Encapsulation on The Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2020; 11:1348-1354. [PMID: 30426464 DOI: 10.1007/s12602-018-9485-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this work was to explore the effect of two encapsulating polysaccharides (sodium alginate and carrageenan) on the viability of probiotic bacteria (L. acidophilus) in ice cream and under simulated gastrointestinal (GIT) conditions. For the purpose, probiotic cells were encapsulated in sodium alginate and carrageenan by an encapsulator using standard operating conditions. Ice cream was manufactured by adding free and microencapsulated probiotics. The survival of free and encapsulated probiotics was monitored over a period of 120 days at - 20 °C. Furthermore, the survival of free and encapsulated probiotic bacteria under the simulated GIT conditions was investigated. The results of the study showed that encapsulation significantly (p < 0.05) improved the cell survival of probiotics in ice cream compared to free cells (non-encapsulated). The viable cell count of probiotic bacteria in the free-state in ice cream was 9.97 log cfu/ml at 0 day that decreased to 6.12 log cfu/ml after 120 days. However, encapsulation improved the viability of the probiotics in the prepared ice cream and GIT. The cell count of probiotics encapsulated with sodium alginate and carrageenan was 9.91 log cfu/ml and 9.89 log cfu/ml respectively at 0 day that decreased to 8.74 log cfu/ml and 8.39 log cfu/ml respectively after 120 days. Similarly, during simulated gastrointestinal assay, the survival rate of encapsulated probiotic bacteria in simulated gastric solution and intestinal solutions was higher than that of free cells. In the case of encapsulated bacteria, only three log while for free cells seven log reduction was recorded. Sodium alginate microcapsules exhibited better release profile than carrageenan. Conclusively, the incorporation of encapsulated probiotics had a significant effect on quality parameters and sensorial characteristics of ice cream.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan.
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Tahir Nadeem
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Saeed
- National Institute Food Science & Technology, University of Agriculture University, Faisalabad, Pakistan
| | - Tabussam Tufail
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
50
|
Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R, Liu W, Tromp RH. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. FOOD STRUCTURE-NETHERLANDS 2020. [DOI: 10.1016/j.foostr.2020.100147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|