1
|
Quradha MM, Tamfu AN, Duru ME, Kucukaydin S, Iqbal M, Qahtan AMF, Khan R, Ceylan O. Evaluation of HPLC Profile, Antioxidant, Quorum Sensing, Biofilm, Swarming Motility, and Enzyme Inhibition Activities of Conventional and Green Extracts of Salvia triloba. Food Sci Nutr 2024; 12:10716-10733. [PMID: 39723056 PMCID: PMC11666897 DOI: 10.1002/fsn3.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
The current study aims to prepare a green extract using a new method in addition to conventional extraction methods including; methanolic and ultrasonic extraction of Salvia triloba, to compare their phenolic composition utilizing high-performance liquid chromatograph equipped with a diode array detector (HPLC-DAD), anti-bacterial, anti-oxidant, and enzyme inhibition activities. The results of HPLC-DAD analysis showed that Rosmarinic acid was found the highest amount in the methanolic extract followed by ultrasonic and green extracts as 169.7 ± 0.51, 135.1 ± 0.40, and 28.58 ± 0.46 μg/g respectively. The Trans-cinnamic acid (4.40 ± 0.09 μg/g) was found exclusively in ultrasonic extract. For bioactivities, the green extract exhibited the highest biofilm inhibition against Enterococcus faecalis compared to other extracts, while the methanolic extract outperformed both ultrasonic-assisted and green extract against Staphylococcus aureus and Escherichia coli strains at minimum inhibitory concentration. The methanolic and green extract exhibited considerable quorum sensing inhibition against Chromobacterium violaceum CV026, while no activity was recorded from ultrasonic-assisted extract. The methanolic and ultrasonic-assisted extracts of S. triloba recorded moderate butyrylcholinesterase inhibition; each extract demonstrated limited inhibitory effects on the urease enzyme. Similarly, each extract of S. triloba demonstrated significant antioxidant activity, with the highest activity exhibited by methanolic extract as β-carotene-linoleic acid assay (IC50 = 10.29 ± 0.36 μg/mL), DPPH• assay (IC50 = 27.77 ± 0.55 μg/mL), ABTS•+ assay (IC50 = 15.49 ± 0.95 μg/mL), metal chelating assay (IC50 = 57.80 ± 0.95 μg/mL), and CUPRAC (assay A 0.50 = 32.54 ± 0.84 μg/mL). Furthermore, the methanolic extract exhibited antioxidant activity better than α-tocopherol (Standard used). The current study demonstrated the potential of green solvent(s) as eco-friendly alternative for extractin phenolic compounds from S. triloba and evaluated their biological activities for the first time.
Collapse
Affiliation(s)
- Mohammed Mansour Quradha
- College of EducationSeiyun UniversitySeiyunYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral IndustriesUniversity of NgaoundereNgaoundereCameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMugla Sitki Kocman UniversityUla MuglaTurkey
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of ScienceMugla Sitki Kocman UniversityMenteşeMuglaTurkey
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health ServicesMugla Sıtkı Kocman UniversityKoycegizMuglaTurkey
| | - Mudassar Iqbal
- Department of Agricultural Chemistry and BiochemistryThe University of Agriculture PeshawarPeshawarPakistan
| | | | - Rasool Khan
- Institute of Chemical SciencesUniversity of PeshawarPeshawarPakistan
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMugla Sitki Kocman UniversityUla MuglaTurkey
| |
Collapse
|
2
|
Boveiri Dehsheikh A, Mahmoodi Sourestani M, Enayatizamir N, Safdarian M, Mottaghipisheh J. Oliveria decumbens, a Long-Neglected Plant with Promising Phytochemical and Biological Properties. Chem Biodivers 2024; 21:e202400810. [PMID: 38743456 DOI: 10.1002/cbdv.202400810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Oliveria decumbens is a folkloric medicinal plant belonging to the Apiaceae family, traditionally utilized to treat various diseases like gastrointestinal disorders, fever, and wounds. This review aims to provide a comprehensive overview of the plant's phytochemical composition and biological properties, with potential implications for various industries and avenues of further research. The data presented here has been compiled through searches utilizing the keyword "Oliveria" across scientific databases such as PubMed, Web of Science, Scopus, ScienceDirect, and SciFinder. Carvacrol and thymol have been identified as the primary volatile constituents, though the complete profile of the plant extract remains to be fully elucidated. Notably, Oliveria decumbens essential oil exhibits significant antibacterial, antifungal, antioxidant, and anticancer properties. Additionally, the plant extract demonstrates promising antiprotozoal, antiviral, hepatoprotective, and immunostimulant effects, although these findings are primarily derived from preliminary studies. While in vitro and in vivo investigations have validated some traditional uses of O. decumbens, further pre-clinical testing is warranted to ascertain both efficacy and safety profiles. Moreover, the identification of specific components within the plant extract is crucial for a more comprehensive understanding of the mechanisms of action underlying its therapeutic properties within the realm of phytomedicine.
Collapse
Affiliation(s)
- Anahita Boveiri Dehsheikh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Naeimeh Enayatizamir
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE, 75007, Uppsala, Sweden
| |
Collapse
|
3
|
Cui H, Zhang C, Su K, Fan T, Chen L, Yang Z, Zhang M, Li J, Zhang Y, Liu J. Oregano Essential Oil in Livestock and Veterinary Medicine. Animals (Basel) 2024; 14:1532. [PMID: 38891579 PMCID: PMC11171306 DOI: 10.3390/ani14111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
With a growing global concern over food safety and animal welfare issues, the livestock and veterinary industries are undergoing unprecedented changes. These changes have not only brought challenges within each industry, but also brought unprecedented opportunities for development. In this context, the search for natural and safe products that can effectively replace traditional veterinary drugs has become an important research direction in the fields of animal husbandry and veterinary medicine. Oregano essential oil (OEO), as a natural extract, is gradually emerging in the fields of animal husbandry and veterinary medicine with its unique antibacterial, antioxidant, and multiple other biological activities. OEO not only has a wide antibacterial spectrum, effectively fighting against a variety of pathogenic microorganisms, but also, because of its natural properties, helps us to avoid traditional veterinary drugs that may bring drug residues or cause drug resistance problems. This indicates OEO has great application potential in animal disease treatment, animal growth promotion, and animal welfare improvement. At present, the application of OEO in the fields of animal husbandry and veterinary medicine has achieved preliminary results. Studies have shown that adding OEO to animal feed can significantly improve the growth performance and health status of animals and reduce the occurrence of disease. At the same time, pharmacokinetic studies in animals show that the absorption, distribution, metabolism, and excretion processes of OEO in animals shows good bioavailability. In summary, oregano essential oil (OEO), as a substitute for natural veterinary drugs with broad application prospects, is gradually becoming a research hotspot in the field of animal husbandry and veterinary medicine. In the future, we look forward to further tapping the potential of OEO through more research and practice and making greater contributions to the sustainable development of the livestock and veterinary industries.
Collapse
Affiliation(s)
- Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Kai Su
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou 061000, China; (K.S.); (T.F.)
| | - Tingli Fan
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou 061000, China; (K.S.); (T.F.)
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Zitong Yang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Mingda Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Jiaqi Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Yuxin Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| |
Collapse
|
4
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
5
|
Quradha MM, Duru ME, Kucukaydin S, Tamfu AN, Iqbal M, Bibi H, Khan R, Ceylan O. Comparative assessment of phenolic composition profile and biological activities of green extract and conventional extracts of Salvia sclarea. Sci Rep 2024; 14:1885. [PMID: 38253648 PMCID: PMC10803343 DOI: 10.1038/s41598-024-51661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been an attempt to develop safe and environmental friendly solvents to replace conventional solvents, and use for extraction bioactive compounds from natural sources. A current investigation involved the preparation of green, methanolic, and ultrasonic extracts of S. sclarea, and compared their phenolic profiling using HPLC-DAD, antibacterial, antioxidant, and enzyme inhibition activities. The HPLC-DAD analysis revealed that Rosmarinic acid was the main content in all extracts, with Ellagic acid only present in the green extract. The green extract exhibited superior anti-biofilm activity against S. Aureus and E. Faecalis compared to the other extracts at MIC concentration. Furthermore, the green extract also displayed the highest inhibition of swarming motility in P. Aeruginosa with inhibition range 68.0 ± 2.1 (MIC) to 19.5 ± 0.6 (MIC/4). and better enzyme inhibitory activity against BChE (with IC50 = 131.6 ± 0.98 µg/mL) and AChE (with inhibition 47.00 ± 1.50%) compared to the other extracts; while, the ultrasonic extract showed strong inhibition of violacein production by C. Violaceum with a inhibition range 05.5 ± 0.1 (MIC/32) to 100 ± 0.00 (MIC), followed by the green extract with a inhibition range 15.0 ± 0.5 (MIC/8) to 100 ± 0.00 (MIC), additionally, the ultrasonic and methanoic extracts showed significant activity against urease enzyme with (IC50 = 171.6 ± 0.95 µg/mL and IC5 0 = 187.5 ± 1.32 µg/mL) respectively. Both the green and methanolic extracts showed considerable antioxidant activities, as β-carotene-linoleic acid (IC50 = 5.61 ± 0.47 µg/mL and 5.37 ± 0.27 µg/mL), DPPH· (IC50 = 19.20 ± 0.70 µg/mL and 16.31 ± 0.23 µg/mL), ABTS·+(IC50 = 8.64 ± 0.63 µg/mL and 6.50 ± 0.45 µg/mL) and CUPRAC (A0.5 = 17.22 ± 0.36 µg/mL and 12.28 ± 0.12 µg/mL) respectively, likewise the green extract performing better in metal chelating compared to the other extracts. The green extraction is reported as a cost effective and solvent free method for extracting natural products that produces compounds free of toxic chemicals. This could be the method to be used in the industries as a renewable method.
Collapse
Affiliation(s)
- Mohammed Mansour Quradha
- College of Education, Seiyun University, Seiyun, Yemen.
- Pharmacy Department, Medical Sciences, Aljanad University for Science and Technology, Taiz, Yemen.
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sıtkı Kocman University, Koycegiz/Mugla, Turkey
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454, Ngaoundere, Cameroon
| | - Mudassar Iqbal
- Department of Agricultural Chemistry and Biochemistry, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Hamida Bibi
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Ula Mugla, 48147, Turkey
| |
Collapse
|
6
|
Dawra M, Bouajila J, El Beyrouthy M, Taillandier P, Nehme N, El Rayess Y. Phytochemical Profile, GC-MS Profiling and In Vitro Evaluation of Some Biological Applications of the Extracts of Origanum syriacum L. and Cousinia libanotica D.C. PLANTS (BASEL, SWITZERLAND) 2024; 13:137. [PMID: 38202445 PMCID: PMC10780604 DOI: 10.3390/plants13010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Indigenous to Lebanon, Origanum syriacum L. and Cousinia libanotica D.C. are notable plants in the Middle East, with O. syriacum known for its aromatic qualities and C. libanotica being less explored. Both plants have a significant role in traditional medicine for treating various ailments. This study aimed to evaluate the phytochemical composition and biological properties of the extracts from these plants. The extracts were obtained through cold maceration with solvents of increasing polarity. The ethyl acetate extract of O. syriacum exhibited the highest total polyphenol content. High-performance liquid chromatography (HPLC) identified fifteen compounds in both C. libanotica and O. syriacum extracts, whereas gas chromatography-mass spectrometry (GC-MS) analysis unveiled 179 volatile compounds. Notably, the O. syriacum-MeOH extract showed moderate antioxidant activity. Both plants' methanolic extracts demonstrated significant anti-Alzheimer's potential. The O. syriacum-dichloromethane and C. libanotica-cyclohexane extracts displayed the highest cytotoxicities against the HCT-116 cell line. For anti-proliferative activity against the Caco-2 cell line, the O. syriacum-methanol and C. libanotica-cyclohexane extracts were the most effective. This study provides valuable insights into the phytochemistry and potential therapeutic applications of extracts from these two oriental plant species.
Collapse
Affiliation(s)
- Michella Dawra
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062 Toulouse, France; (M.D.); (P.T.)
- Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekwaneh P.O. Box 6573, Lebanon;
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062 Toulouse, France; (M.D.); (P.T.)
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062 Toulouse, France; (M.D.); (P.T.)
| | - Nancy Nehme
- Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekwaneh P.O. Box 6573, Lebanon;
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| |
Collapse
|
7
|
Martins-Gomes C, Nunes FM, Silva AM. Natural Products as Dietary Agents for the Prevention and Mitigation of Oxidative Damage and Inflammation in the Intestinal Barrier. Antioxidants (Basel) 2024; 13:65. [PMID: 38247489 PMCID: PMC10812469 DOI: 10.3390/antiox13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Food intake is a basic need to sustain life, but foodborne pathogens and food-related xenobiotics are also the main health concerns regarding intestinal barrier homeostasis. With a predominant role in the well-being of the entire human body, intestinal barrier homeostasis is strictly regulated by epithelial and immune cells. These cells are also the main intervenients in oxidative stress and inflammation-related diseases in the intestinal tract, triggered, for example, by genetic/epigenetic factors, food additives, pesticides, drugs, pathogens, and their metabolites. Nevertheless, the human diet can also be seen as a solution for the problem, mainly via the inclusion of functional foods or nutraceuticals that may act as antioxidant/anti-inflammatory agents to prevent and mitigate acute and chronic oxidative damage and inflammation. A literature analysis of recent advances in this topic highlights the significant role of Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways in these biological processes, with many natural products and phytochemicals targeting endogenous antioxidant systems and cytokine production and balance. In this review, we summarized and discussed studies using in vitro and in vivo models of the intestinal tract used to reproduce oxidative damage and inflammatory events, as well as the role of natural products as modulators of Nrf2 and NK-kB pathways.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Kunová S, Taglieri I, Haščík P, Ben Hsouna A, Mnif W, Venturi F, Sanmartin C, Čmiková N, Kluz MI, Kačániová M. Dried Herbs as an Easy-to-Use and Cost-Effective Alternative to Essential Oils to Extend the Shelf Life of Sheep Lump Cheese. Foods 2023; 12:4487. [PMID: 38137291 PMCID: PMC10743011 DOI: 10.3390/foods12244487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this research was to assess the effectiveness of three specific dried herbs (rosemary, thyme, and oregano) in combating microbial spoilage in sheep lump cheese. This was achieved by comparing them with a control group and cheeses treated with corresponding 1% essential oils (Rosmarinus officinalis, Origanum vulgare, Thymus vulgaris). All cheese samples were vacuum-sealed and stored at 4 °C for 15 days. Analysis of total viable counts of viable bacteria (TVC), coliform bacteria (CB), lactic acid bacteria (LAB), and microscopic filamentous fungi (MFF) was conducted on days 0, 5, 10, and 15. The results revealed that, at the end of the storage period, dried oregano-treated samples exhibited the lowest TVC count (5.80 log CFU/g), while dried rosemary-treated samples showed the lowest CB count (3.27 log CFU/g). Moreover, the lowest MFF count (2.40 log CFU/g) was observed in oregano essential oil-treated samples. Additionally, dried oregano-treated samples displayed the highest LAB count (4.49 log CFU/g) at the experiment's conclusion. Furthermore, microorganism identification from sheep cheese was performed using MALDI-TOF MS Biotyper technology, revealing that the most frequently isolated bacteria were Citrobacter braakii and Hafnia alvei (Enterobacteriaceae family), along with Lacticaseibacillus paracasei (Lactobacillaceae family). In summary, all the natural substances examined exhibited inhibitory effects against the studied microorganisms, with oregano essential oil and dried oregano demonstrating the strongest inhibitory effects. This supports their potential use as cost-effective natural preservatives to extend the shelf life of sheep lump cheese.
Collapse
Affiliation(s)
- Simona Kunová
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 94976 Nitra, Slovakia (P.H.)
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy (C.S.)
- Nutrafood Research Center, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 94976 Nitra, Slovakia (P.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Sfax 3038, Tunisia;
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy (C.S.)
- Nutrafood Research Center, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy (C.S.)
- Nutrafood Research Center, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
| |
Collapse
|
9
|
Ozden EM, Bingol Z, Mutlu M, Karagecili H, Köksal E, Goren AC, Alwasel SH, Gulcin İ. Antioxidant, Antiglaucoma, Anticholinergic, and Antidiabetic Effects of Kiwifruit ( Actinidia deliciosa) Oil: Metabolite Profile Analysis Using LC-HR/MS, GC/MS and GC-FID. Life (Basel) 2023; 13:1939. [PMID: 37763342 PMCID: PMC10532620 DOI: 10.3390/life13091939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Determining the antioxidant abilities and enzyme inhibition profiles of medicinally important plants and their oils is of great importance for a healthy life and the treatment of some common global diseases. Kiwifruit (Actinidia deliciosa) oil was examined and researched using several bioanalytical methods comprehensively for the first time in this research to determine its antioxidant, antiglaucoma, antidiabetic and anti-Alzheimer's capabilities. Additionally, the kiwifruit oil inhibitory effects on acetylcholinesterase (AChE), carbonic anhydrase II (CA II), and α-amylase, which are linked to a number of metabolic illnesses, were established. Furthermore, LC-HRMS analysis was used to assess the phenolic content of kiwifruit oil. It came to light that kiwifruit oil contained 26 different phenolic compounds. According to the LC-HRMS findings, kiwifruit oil is abundant in apigenin (74.24 mg/L oil), epigallocatechin (12.89 mg/L oil), caryophyllene oxide (12.89 mg/L oil), and luteolin (5.49 mg/L oil). In addition, GC-MS and GC-FID studies were used to ascertain the quantity and chemical composition of the essential oils contained in kiwifruit oil. Squalene (53.04%), linoleoyl chloride (20.28%), linoleic acid (2.67%), and palmitic acid (1.54%) were the most abundant compounds in kiwifruit oil. For radical scavenging activities of kiwifruit oil, 1,1-diphenyl-2-picryl-hydrazil (DPPH•) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS•+) radicals scavenging techniques were examined. These methods effectively demonstrated the potent radical scavenging properties of kiwifruit oil (IC50: 48.55 μg/mL for DPPH•, and IC50: 77.00 μg/mL for ABTS•+ scavenging). Also, for reducing capabilities, iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) reducing abilities were studied. Moreover, kiwifruit oil showed a considerable inhibition effect towards hCA II (IC50: 505.83 μg/mL), AChE (IC50: 12.80 μg/mL), and α-amylase (IC50: 421.02 μg/mL). The results revealed that the use of kiwifruit oil in a pharmaceutical procedure has very important effects due to its antioxidant, anti-Alzheimer, antidiabetic, and antiglaucoma effects.
Collapse
Affiliation(s)
- Eda Mehtap Ozden
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Türkiye;
| | - Zeynebe Bingol
- Department of Medical Services and Techniques, Tokat Vocational School of Health Services, Gaziosmanpasa University, Tokat 60250, Türkiye;
| | - Muzaffer Mutlu
- Vocational School of Applied Sciences, Gelisim University, Istanbul 34315, Türkiye;
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, Siirt 56100, Türkiye
| | - Ekrem Köksal
- Department of Chemistry, Faculty of Science and Arts, Erzincan Binali Yildirim University, Erzincan 24100, Türkiye;
| | - Ahmet C. Goren
- Department Chemistry, Faculty of Sciences, Gebze Technical University, Kocaeli 41400, Türkiye;
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia;
| | - İlhami Gulcin
- Department of Medical Services and Techniques, Tokat Vocational School of Health Services, Gaziosmanpasa University, Tokat 60250, Türkiye;
| |
Collapse
|
10
|
Hassanen EI, Issa MY, Hassan NH, Ibrahim MA, Fawzy IM, Fahmy SA, Mehanna S. Potential Mechanisms of Imidacloprid-Induced Neurotoxicity in Adult Rats with Attempts on Protection Using Origanum majorana L. Oil/Extract: In Vivo and In Silico Studies. ACS OMEGA 2023; 8:18491-18508. [PMID: 37273614 PMCID: PMC10233680 DOI: 10.1021/acsomega.2c08295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
Imidacloprid (IMI) insecticide is rapidly metabolized in mammals and contributes to neurotoxicity via the blocking of nicotinic acetylcholine receptors, as in insects. Origanum majorana retains its great antioxidant potential in both fresh and dry forms. No data is available on the neuroprotective effect of this plant in laboratory animals. In this context, aerial parts of O. majorana were used to prepare the essential oil (OMO) and methanol extract (OME). The potential neuroprotective impact of both OMO and OME against IMI-induced neurotoxicity in rats was explored. Forty-two rats were divided into 6 groups, with 7 rats in each one. Rats were daily administered the oral treatments: normal saline, OMO, OME, IMI, IMI + OMO, and IMI + OME. Our results revealed the identification of 55 components in O. majorana essential oil, most belonging to the oxygenated and hydrocarbon monoterpenoid group. Moreover, 37 constituents were identified in the methanol extract, mostly phenolics. The potent neurotoxic effect of IMI on rats was confirmed by neurobehavioral and neuropathological alterations and a reduction of both acetylcholine esterase (AchE) activity and dopamine (DA), serotonin (5HT), and γ-aminobutyric acid (GABA) levels in the brain. Exposure of rats to IMI elevates the malondialdehyde (MDA) levels and reduces the antioxidant capacity. IMI could upregulate the transcription levels of nuclear factor-κB (NF-κB), interleukin-1 β (IL-1β), and tumor necrosis factor (TNF-α) genes and express strong caspase-3 and inducible nitric oxide synthase (iNOS) immunostaining in most examined brain areas. On the other hand, rats coadministered OMO or OME with IMI showed a marked improvement in all of the studied toxicological parameters. In conclusion, cotreatment of O. majorana extracts with IMI can protect against IMI neurotoxicity via their potent antioxidant, anti-inflammatory, and anti-apoptotic effects. Thus, we recommend a daily intake of O. majorana to protect against insecticide's oxidative stress-mediated neuroinflammatory stress and apoptosis. The molecular docking study of linalool, rosmarinic acid, γ-terpene, and terpene-4-ol justify the observed normalization of the elevated iNOS and TNF-α levels induced after exposure to IMI.
Collapse
Affiliation(s)
- Eman I. Hassanen
- Department
of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Marwa Y. Issa
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, 11562 Cairo, Egypt
| | - Neven H. Hassan
- Department
of Physiology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Marwa A. Ibrahim
- Department
of Biochemistry, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Iten M. Fawzy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, 11835 Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Department
of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, 11835 Cairo, Egypt
| | - Sally Mehanna
- Department
of Animal Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| |
Collapse
|
11
|
Phytochemical Compounds, Acute Toxicity, Anti-Inflammatory and Antioxidant Activities of Thymus leptobotrys Murb Essential Oil. Molecules 2023; 28:molecules28031355. [PMID: 36771022 PMCID: PMC9920518 DOI: 10.3390/molecules28031355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The present study was conducted to evaluate the acute toxicity and anti-inflammatory effect in vivo, as well as the antioxidant activity, of the essential oil of Thymus leptobotrys Murb. The results indicate that the tested essential oil is non-toxic, with an estimated LD50 of 2500 mg kg-1 of mice body weight. The anti-inflammatory test revealed that, at a dose of 200 mg kg-1, the essential oil reduced rat paw edemas by 89.59% within 3 h of oral administration, this reduction in edema size was greater than that obtained with indomethacin (75.78%). The antioxidant activity (IC50) of Thymus leptobotrys Murb essential oil was 346.896 µg mL-1 and 861.136 mg Trolox equivalent/g essential oil in the 2.2-diphenyl1-picryl-hydrazyl radical scavenging capacity (DPPH) and Trolox equivalent antioxidant capacity (TEAC) assays, respectively. The toxicity test reveals an LD50 greater than 2500 mg kg-1 of body weight of mice which classifies it within category 5 of non-toxic substances that can be administered orally. These results suggest that the essential oil of Thymus leptobotrys Murb is not toxic, and it represents a valuable source of anti-inflammatory and antioxidant metabolites.
Collapse
|
12
|
Hao Y, Guo X, Zhang W, Xia F, Sun M, Li H, Bai H, Cui H, Shi L. 1H NMR–based metabolomics reveals the antimicrobial action of oregano essential oil against Escherichia coli and Staphylococcus aureus in broth, milk, and beef. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Gong X, Huang J, Xu Y, Li Z, Li L, Li D, Belwal T, Jeandet P, Luo Z, Xu Y. Deterioration of plant volatile organic compounds in food: Consequence, mechanism, detection, and control. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Formagio ASN, Vilegas W, Volobuff CRF, Kassuya CAL, Cardoso CAL, Pereira ZV, Silva RMMF, Dos Santos Yamazaki DA, de Freitas Gauze G, Manfron J, Marangoni JA. Exploration of essential oil from Psychotria poeppigiana as an anti-hyperalgesic and anti-acetylcholinesterase agent: Chemical composition, biological activity and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115220. [PMID: 35358624 DOI: 10.1016/j.jep.2022.115220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leaves from Psychotria poeppigiana Müll. Arg. (accepted as Palicourea tomentosa (Aubl.) Borhidi), Rubiaceae, has traditionally been used in medicine for treatments of inflammation and pain; Synonymously, Cephaelis elata for the treatment of dementia; However, few scientific studies have been evidence demonstrating this activity. AIM OF THE STUDY The aim of this study was to investigate the chemical composition of P. poeppigiana essential oil obtained from leaves (EOPP) and its antioxidant, anti-inflammatory and acetylcholinesterase (AChE) activities. Molecular docking simulations were carried out with the main constituents. MATERIALS AND METHODS EOPP (hydrodistillation) was analysed by gas chromatography-mass spectrometry (GC-MS). The fractionation of EOPP afforded germacrene D and bicyclogermacrene. The antioxidant activity of EOPP was determined by MDA assay. The inflammatory parameters were evaluated using CFA model (with paw edema, mechanical, thermal hyperalgesia, MPO and NAG) in EOPP (30, 100 and 300 mg/kg), germacrene D and bicyclogermacrene (30 mg/kg). The AChE inhibition was evaluated in rat brain structures and molecular docking simulations were carried out using Autodock v.4.3.2. RESULTS GC-MS analysis identified 19 compounds, and the major compounds were germacrene D (29.38%) and bicyclogermacrene (25.21%). EOPP exhibited high antioxidant capacity (IC50 = 12.78 ± 1.36 μg/mL). All the tested doses of EOPP and both major constituents significantly inhibited cold and mechanical hyperalgesia and significantly blocked the increase in MPO activity 24 h after the CFA injection. There was significant AChE inhibition by EOPP and germacrene D in the cerebral cortex and hippocampus (>50%). Enzyme-ligand molecular modelling showed that the major constituents of EOPP interacted differently with AChE. CONCLUSIONS The chemical compounds of the essential oil from the leaves of P. poeppigiana is based mainly on terpenes, the sesquiterpenes germacrene D (29.38%) and bicyclogermacrene (25.21%) being the major compounds. EOPP presented antioxidant, anti-inflammatory and anti-acetylcholinesterase (AChE) activities. Besides, enzyme-ligand molecular modelling showed the EOPP may act as an anti-hyperalgesic and AChE inhibitory agent. Taken together, these results might be in accordance with if folk use for pain- and inflammation-related symptoms.
Collapse
Affiliation(s)
| | - Wagner Vilegas
- Institute of Biosciences, UNESP - São Paulo State University, São Vicente, SP, Brazil.
| | | | | | | | - Zefa Valdevina Pereira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| | | | | | | | - Jane Manfron
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, PR, Brazil.
| | - Janaine Alberto Marangoni
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
15
|
Kabdal T, Himani, Kumar R, Prakash O, Nagarkoti K, Rawat D, Srivastava R, Kumar S, Dubey SK. Seasonal variation in the essential oil composition and biological activities of Thymus linearis Benth. Collected from the Kumaun region of Uttarakhand, India. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Mesmar J, Abdallah R, Badran A, Maresca M, Baydoun E. Origanum syriacum Phytochemistry and Pharmacological Properties: A Comprehensive Review. Molecules 2022; 27:4272. [PMID: 35807517 PMCID: PMC9268277 DOI: 10.3390/molecules27134272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Herbal medicine has been gaining special interest as an alternative choice of treatment for several diseases, being generally accessible, cost-effective and safe, with fewer side-effects compared to chemically synthesized medicines. Over 25% of drugs worldwide are derived from plants, and surveys have shown that, when available, herbal medicine is the preferred choice of treatment. Origanum syriacum (Lamiaceae) is a widely used medicinal plant in the Middle East, both as a home and a folk remedy, and in the food and beverage industry. Origanum syriacum contains numerous phytochemical compounds, including flavonoids, phenols, essential oils, and many others. Because of its bioactive compounds, O. syriacum possesses antioxidant, antimicrobial, and antiparasitic capacities. In addition, it can be beneficial in the treatment of various diseases such as cancer, neurodegenerative disorders, and peptic ulcers. In this review, the chemical compositions of different types of extracts and essential oils from this herb will first be specified. Then, the pharmacological uses of these extracts and essential oils in various contexts and diseases will be discussed, putting emphasis on their efficacy and safety. Finally, the cellular and molecular mechanisms of O. syriacum phytochemicals in disease treatment will be described as a basis for further investigation into the plant's pharmacological role.
Collapse
Affiliation(s)
- Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (J.M.); (R.A.)
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (J.M.); (R.A.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman 961343, Jordan;
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (J.M.); (R.A.)
| |
Collapse
|
17
|
Romo-Rico J, Krishna SM, Bazaka K, Golledge J, Jacob MV. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater 2022; 147:34-49. [PMID: 35649506 DOI: 10.1016/j.actbio.2022.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
Abstract
There is a global epidemic of non-healing wounds. Chronic inflammation, overexpression of pro-inflammatory cytokines, oxidative stress and bacterial infection are implicated in delayed wound healing. Natural extracts are a rich source of bioactive molecules called plant secondary metabolites (PSMs) that include terpenes and phenols. These molecules may facilitate wound healing through their antioxidant, anti-inflammatory, and antibacterial activity. After briefly outlining the process of wound healing and how it is compromised in chronic wounds, this review focuses on investigating how PSMs-based polymers may improve wound healing. Best methods for incorporating PSMs into wound dressings are reviewed and critically compared. The exiting body of literature strongly suggests that PSMs-based polymers incorporated into wound dressings could have clinical value in aiding wound healing. STATEMENT OF SIGNIFICANCE: Chronic wounds develop by the persistence of inflammation, oxidative stress and infection. Chronic wounds affect the worldwide population, by reducing quality of life of patients with significant cost to healthcare systems. To help chronic wounds to heal and overcome this burden, materials with anti-inflammatory, antioxidant and antibacterial properties are required. Plant secondary metabolites (PSMs) are volatile materials that have all these properties. PSMs-based polymers can be fabricated by polymerization techniques. The present review provides an overview of the state-of-the-art of the wound healing mechanisms of PSMs. Current developments in the field of PSMs-based polymers are reviewed and their potential use as wound dressings is also covered.
Collapse
|
18
|
Sulaiman N, Pieroni A, Sõukand R, Polesny Z. Food Behavior in Emergency Time: Wild Plant Use for Human Nutrition during the Conflict in Syria. Foods 2022; 11:foods11020177. [PMID: 35053908 PMCID: PMC8775266 DOI: 10.3390/foods11020177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Wild food plants (WFPs) have been an important source of human nutrition since ancient times, and it particularly revives when conventional food is not available due to emergency situations, such as natural disasters and conflicts. The war in Syria has entered 10 years since it started in 2011, and it has caused the largest war-related crises since World War II. Nearly 60% of the Syrian population (12.4 million people) are food-insecure. WFPs are already culturally important in the region, and may be supplementing local diets during this conflict. Our study aimed to uncover the conflict’s effect on the use of WFPs and to know what species are consumed by local people during the current crisis. The fieldwork was carried out between March 2020 and March 2021 in the Tartus governorate located in the coastal region of Syria. Semi-structured interviews were conducted with 50 participants (26 women and 24 men) distributed in 26 villages along the study area. We recorded the vernacular names, uses, plant parts used, modes of preparation and consumption, change in WFP use before and during the conflict, and informants’ perceptions towards WFPs. We documented 75 wild food plant species used for food and drink. Almost two-thirds (64%) of informants reported an increase in their reliance on wild plants as a food source during the conflict. The species of Origanum syriacum, Rhus coriaria, Eryngium creticum, and Cichorium intybus were among the most quoted species by informants. Sleeq (steamed leafy vegetables), Zaatar (breakfast/dinner food), and Louf (soup) were the most popular wild plant-based dishes.
Collapse
Affiliation(s)
- Naji Sulaiman
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic;
| | - Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Italy;
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq
| | - Renata Sõukand
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30174 Venezia, Italy;
| | - Zbynek Polesny
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic;
- Correspondence:
| |
Collapse
|
19
|
Gulcan HO, Orhan IE. A Recent Look into Natural Products that have Potential to Inhibit Cholinesterases and Monoamine Oxidase B: Update for 2010-2019. Comb Chem High Throughput Screen 2021; 23:862-876. [PMID: 31985374 DOI: 10.2174/1386207323666200127145246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
With respect to the unknowns of pathophysiology of Alzheimer's Disease (AD)-, and Parkinson's Disease (PD)-like neurodegenerative disorders, natural product research is still one of the valid tools in order to provide alternative and/or better treatment options. At one hand, various extracts of herbals provide a combination of actions targeting multiple receptors, on the other hand, the discovery of active natural products (i.e., secondary metabolites) generally offers alternative chemical structures either ready to be employed in clinical studies or available to be utilized as important scaffolds for the design of novel agents. Regarding the importance of certain enzymes (e.g. cholinesterase and monoamine oxidase B), for the treatment of AD and PD, we have surveyed the natural product research within this area in the last decade. Particularly novel natural agents discovered within this period, concomitant to novel biological activities displayed for known natural products, are harmonized within the present study.
Collapse
Affiliation(s)
- Hayrettin O Gulcan
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR. North Cyprus, via Mersin 10, Turkey
| | - Ilkay E Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06300, Turkey
| |
Collapse
|
20
|
Alwafa RA, Mudalal S, Mauriello G. Origanum syriacum L. (Za'atar), from Raw to Go: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:1001. [PMID: 34067806 PMCID: PMC8156404 DOI: 10.3390/plants10051001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
The interest in za'atar has increased in recent years due to its economic, cultural, and functional importance. The traditional za'atar mix made from dried Origanum syriacum is now a demanded product nationally and internationally. Air-drying at low temperatures can preserve za'atar quality traits better than other techniques such as oven-drying. The Palestinian za'atar market has the potential to develop and increase its value. However, it is facing many challenges. Another valuable product of za'atar is essential oil. Za'atar essential oil quantity and quality are affected by many factors including geographical location, cultivation, harvesting season, soil, extraction method, temperature, and others. These factors interact with za'atar and with each other; therefore, some factors are more effective than others and further research is needed to determine the optimum condition for producing and obtaining za'atar essential oil. Antimicrobial and antioxidant activities are the main functionalities of za'atar essential oil that are behind its medicinal importance. One hundred and twenty-one compounds have been identified in za'atar essential oil. The most common compounds are thymol, γ-terpinene, carvacrol, and α-pinene. The variation in the composition among za'atar essential oil samples results from the different conditions of the studies during za'atar growth as well as essential oil extraction.
Collapse
Affiliation(s)
- Reem Abu Alwafa
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Samer Mudalal
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
| |
Collapse
|
21
|
Xu W, Wang J, Ju B, Lan X, Ying X, Stien D. Seven compounds from Portulaca oleracea L. and their anticholinesterase activities. Nat Prod Res 2021; 36:2547-2553. [PMID: 33926330 DOI: 10.1080/14786419.2021.1916928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A novel lignan, identified as 4-(3,4-dihydroxyphenyl)-6,7-dimethoxy-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one, named oleralignan A (1), together with six known compounds, loliolide (2), isololiolide (3), dehydrololiolide (4), daphnetin (5), esculetin (6), and trans-coumaric acid methyl ester (7) was obtained from Portulaca oleracea L., while compounds 3, 4, 6, and 7 were isolated from the plant for the first time. Their structures were elucidated using spectroscopic methods, including one- and two-dimensional NMR and high-resolution electrospray ionization time-of-flight mass spectrometry. In addition, the results of activity assay demonstrated that compounds 1-7 have anticholinesterase activities.
Collapse
Affiliation(s)
- Wen Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Jianhua Wang
- School of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Baozhao Ju
- School of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiujuan Lan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes (LBBM), Banyuls-sur-Mer, France
| |
Collapse
|
22
|
Shamseddine L, Chidiac JJ. Composition's effect of Origanum Syriacum essential oils in the antimicrobial activities for the treatment of denture stomatitis. Odontology 2021; 109:327-335. [PMID: 32808051 PMCID: PMC7430938 DOI: 10.1007/s10266-020-00547-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
This research has several purposes: First to assess the bacterial and fungal minimum inhibitory concentration of Origanum Syriacum essential oil. Second to quantify its bactericidal and fungicidal minimal concentration against S. aureus, S. mutans, and C. albicans found in denture stomatitis. The third purpose is to look at the influence of three different soils (Annaya, Bhanin and Michrif) on the essential oils composition. Three essential oils were extracted by hydro-distillation from three different Origanum Syriacum plant origins. Bioassays were conducted using a broth microdilution methods. Gas Chromatography analysis was used to calculate the abundance of most components in each essential oil. Post hoc tests assessed antimicrobial effects between ecotypes while Pearson's test correlated the different components and their antimicrobial efficiency (α < 0.05). All tested essential oils were efficient against all microorganisms. Origanum Syriacum essential oils derived from Annaya and Bhanin soils showed a superior antimicrobial activity compared to the Michrif one. The most abundant component and most efficient among all essential oils constituents was carvacrol. It can be concluded that Origanum Syriacum essential oils have an antimicrobial activity, which depends on the ecotype, its origin and its composition. They might be used to start a clinical trial for the treatment of denture stomatitis.
Collapse
Affiliation(s)
- Loubna Shamseddine
- Faculty of Dental Medicine, Department of Prosthodontics, Lebanese University, Beirut, Hadat Lebanon
| | - Jose Johann Chidiac
- Faculty of Dental Medicine, Department of Prosthodontics, Lebanese University, Beirut, Hadat Lebanon
| |
Collapse
|
23
|
Sikorska-Zimny K, Lisiecki P, Gonciarz W, Szemraj M, Ambroziak M, Suska O, Turkot O, Stanowska M, Rutkowski KP, Chmiela M, Mielicki W. Influence of Agronomic Practice on Total Phenols, Carotenoids, Chlorophylls Content, and Biological Activities in Dry Herbs Water Macerates. Molecules 2021; 26:molecules26041047. [PMID: 33671275 PMCID: PMC7923153 DOI: 10.3390/molecules26041047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) have long been known for their organoleptic properties. Both plants are widely used in cuisine worldwide in fresh and dried form and as a pharmaceutical raw material. The study aimed to assess if the type of cultivation influenced chosen chemical parameters (total polyphenols by Folin-Ciocalteu method; carotenoids and chlorophyll content by Lichtenthaler method), antimicrobial activity (with chosen reference microbial strains) and shaped cytotoxicity (with L929 mouse fibroblasts cell line) in water macerates of dry oregano and thyme. Polyphenols content and antimicrobial activity were higher in water macerates obtained from conventional cultivation (independently from herb species), unlike the pigments in a higher amount in macerates from organic herbs cultivation. Among all tested macerates stronger antimicrobial properties (effective in inhibiting the growth of Pseudomonas aeruginosa, Bacillus cereus and Salmonella enteritidis) and higher cytotoxicity (abilities to diminish the growth of L929 fibroblasts cytotoxicity) characterized the conventionally cultivated thyme macerate.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Skierniewice, Fruit and Vegetables Storage and Processing Department, Division of Fruit and Vegetable Storage and Postharvest Physiology, Research Institute of Horticulture, Pomologiczna 13a Street, 96-100 Skierniewice, Poland;
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
- Correspondence: or ; Tel.: +48-53-4800-418
| | - Paweł Lisiecki
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, The Medical University of Łódź, Pomorska 137 Street, 90-235 Lodz, Poland;
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environment Protection, The University of Łódź, Banacha 12/16 Street, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, The Medical University of Łódź, Pomorska 137 Street, 90-235 Lodz, Poland;
| | - Maja Ambroziak
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
| | - Olga Suska
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
| | - Oliwia Turkot
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
| | - Małgorzata Stanowska
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
| | - Krzysztof P. Rutkowski
- Skierniewice, Fruit and Vegetables Storage and Processing Department, Division of Fruit and Vegetable Storage and Postharvest Physiology, Research Institute of Horticulture, Pomologiczna 13a Street, 96-100 Skierniewice, Poland;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environment Protection, The University of Łódź, Banacha 12/16 Street, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Wojciech Mielicki
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, The Medical University of Łódź, Muszyńskiego 1 Street, 90-151 Lodz, Poland
| |
Collapse
|
24
|
Ligaj M, Kobus-Cisowska J, Szczepaniak O, Szulc P, Kikut-Ligaj D, Mikołajczak-Ratajczak A, Bykowski P, Szymanowska D, Przeor M, Polewski K, Jarzębski M. Electrochemical screening of genoprotective and antioxidative effectiveness of Origanum vulgare L. and its functionality in the prevention of neurodegenerative disorders. Talanta 2021; 223:121749. [PMID: 33298273 DOI: 10.1016/j.talanta.2020.121749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
A new way of electrochemical DNA sensor using as a screening tool for the determination of phytochemicals with high genoprotective functionality is proposed. The biosensor's detection layer was prepared with double stranded deoxyribonucleic acid (ds DNA) that were subjected to oxidative stress induced by •OH radicals generated by Fenton reaction. The oxidized guanine derivative, 8-oxo-7,8-dihydro-2'-deoxyguanosine, was treated as an indicator of DNA oxidative damage. This derivative may cause mutation through its ability to pair with adenine. The abnormalities of DNA structure and DNA repair system are known to be directly related to progressive neurodegeneration. The present study showed that during oxidative stress, the 2.5% oregano extract protected guanine from undergoing oxidation to 8-oxoguanine. The results revealed that this genoprotective effectiveness can make oregano a very efficient protective barrier against oxidative stress. Due to these unique properties of oregano we propose the recipe of a functional bread with its addition. It was found that the functionality of the prepared bread was not limited to antioxidative activity but also is expressed in the inhibition of cholinesterases. These findings indicate that oregano can act as an important component in the therapeutic diet recommended in neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Ligaj
- Department of Non-Food Products Quality and Packaging Development, Poznan University of Economics and Business, Al. Niepodleglosci 10, 61-875, Poznan, Poland
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Ul. Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Oskar Szczepaniak
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Ul. Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, 60-621, Poznan, Poland
| | - Dariusz Kikut-Ligaj
- Department of Natural Science and Quality Assurance, Poznan University of Economics and Business, Al. Niepodleglosci 10, 61-875, Poznan, Poland
| | - Anna Mikołajczak-Ratajczak
- Department of Non-Food Products Quality and Packaging Development, Poznan University of Economics and Business, Al. Niepodleglosci 10, 61-875, Poznan, Poland
| | - Patryk Bykowski
- Department of Non-Food Products Quality and Packaging Development, Poznan University of Economics and Business, Al. Niepodleglosci 10, 61-875, Poznan, Poland
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Ul. Wojska Polskiego 48, 60-624, Poznan, Poland
| | - Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Ul. Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Krzysztof Polewski
- Department of Physics and Biophysics, Poznan University of Life Sciences, Ul. Wojska Polskiego 38-42, 60-637, Poznan, Poland
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Poznan University of Life Sciences, Ul. Wojska Polskiego 38-42, 60-637, Poznan, Poland.
| |
Collapse
|
25
|
Dahmani S, Chabir R, Errachidi F, Berrada W, Lansari H, Benidir M, El Ghadraoui L, Bour A. Evaluation of in vivo wound healing activity of Moroccan Citrus reticulata peel extract. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00222-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Citrus reticulata is one of the most cultivated fruit with great benefits for humans in the world. Citrus reticulata peel has several biological activities within them hypoglycemic, hepatoprotective, antimicrobial and antioxidant. The present study emphasizes on the in vivo wound healing and in vitro antimicrobial and antioxidant activities of Citrus reticulata peel extract.
Methods
Forty albino mice (23–29 g) of either sex were divided into four groups. The test groups were treated with experimental ointment (0.5% and 10% of methanolic extract), negative control were treated with Vaseline and the positive control were treated with silver sulfadiazine. Burn wounds were induced on dorsal area of mice bodies. Wound area measurement was carried out every day during 22 days. Biochemical screening was performed to identify possible compounds. Antioxidant and antimicrobial activities were also determined.
Results
Significant wound healing activity was observed with topical application of Citrus reticulata peel extract. Wound area reduction at day 16 of treatment was 100% for both treated groups (0.5% and 10%) when compared to positive and negative control it was 100% and 98.32% respectively at day 22. Furthermore higher rate of wound contraction (100% on 16th day) was observed for both treated groups.
The result of biochemical screening showed that C. reticulata peel is characterized by highest amount of total polyphenols (13.19 mg/g), flavonoids (4.07 mg/g), vitamin C (13.20 mg/g), carotenoids (0.032 mg/g) and lowest content of macronutrients (Proteins: 0.40%, reducing sugars: 7.21%; lipids: 1.5%). Additionally C. reticulata peel exhibited remarkable antioxidant activity using DPPH and phosphomolybdate methods as well as the extract possess antimicrobial effect against pathogen bactria.
Conclusion
The findings from this research indicated that Citrus reticulata peel extract is effective in inhibiting the growth of pathogen bacteria and could be of therapeutic potentials for wound healing.
Collapse
|
26
|
Combination of essential oils in dairy products: A review of their functions and potential benefits. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Avola R, Granata G, Geraci C, Napoli E, Graziano ACE, Cardile V. Oregano (Origanum vulgare L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model. Food Chem Toxicol 2020; 144:111586. [PMID: 32679285 DOI: 10.1016/j.fct.2020.111586] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023]
Abstract
Skin acts as a protective barrier between the body and the external environment. Skin wounds are a common inflammatory disorder for the solution of which plants and essential oils have been applied as a medical option for centuries. Origanum vulgare essential oil (OEO) is largely used in folk medicine, but its molecular mechanisms of action are not fully known. In this study, we evaluated the anti-inflammatory/antioxidant activity as well as wound healing capacity of a well-characterized OEO on human keratinocytes NCTC 2544 treated with interferon-gamma (IFN-γ) and histamine (H) or subjected to a scratch test. The expression of pro-inflammatory mediators such as reactive oxygen species (ROS), inter-cellular adhesion molecule (ICAM)-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 were verified. The DNA damage was shown by the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) and activation of proliferating cell nuclear antigen (PCNA). Moreover, the abnormal modification of extracellular matrix components (ECM) was examined by determining matrix metalloproteinase (MMP)-1, and -12. Compared to untreated control, OEO showed efficacy in supporting and enhancing the cell motility. In IFN-γ and H treated cells, OEO displayed a significant reduction of ROS, ICAM-1, iNOS, COX-2, 8-OHdG, MMP-1, and MMP-12. OEO proved useful to treat inflammation and support cell motility during wound healing.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy; Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Giuseppe Granata
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Corrada Geraci
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy.
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy.
| |
Collapse
|
28
|
The phenolic contents, antioxidant and anticholinesterase activity of section Amaracus (Gled.) Vogel and Anatolicon Ietsw. of Origanum L. species. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
29
|
Umaraw P, Chauhan G, Mendiratta SK, Verma AK, Arya A. Effect of oregano and bay as natural preservatives in meat bread for extension of storage stability at ambient temperature. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pramila Umaraw
- Division of Livestock Products Technology Indian Veterinary Research Institute Bareilly India
- Department of Livestock Products Technology College of Veterinary and Animal Sciences Sardar Vallabhbhai Patel University of Agriculture and Technology Meerut India
| | - Geeta Chauhan
- Division of Livestock Products Technology Indian Veterinary Research Institute Bareilly India
| | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology Indian Veterinary Research Institute Bareilly India
| | - Akhilesh K. Verma
- Department of Livestock Products Technology College of Veterinary and Animal Sciences Sardar Vallabhbhai Patel University of Agriculture and Technology Meerut India
| | - Anita Arya
- Division of Livestock Products Technology Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
30
|
Efficacy of Origanum syriacum Essential Oil against the Mosquito Vector Culex quinquefasciatus and the Gastrointestinal Parasite Anisakis simplex, with Insights on Acetylcholinesterase Inhibition. Molecules 2019; 24:molecules24142563. [PMID: 31311079 PMCID: PMC6680750 DOI: 10.3390/molecules24142563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Developing effective and eco-friendly antiparasitic drugs and insecticides is an issue of high importance nowadays. In this study, we evaluated the anthelminthic and insecticidal potential of the leaf essential oil obtained from Origanum syriacum against the L3 larvae of the parasitic nematode Anisakis simplex and larvae and adults of the mosquito Culex quinquefasciatus. Tests on A. simplex were performed by standard larvicidal and penetration assays, while mosquito toxicity was assessed relying on larvicidal, tarsal contact, and fumigation tests. To shed light on the possible mode of action, we analyzed the oil impact as acetylcholinesterase (AChE) inhibitor. This oil was particularly active on L3 larvae of A. simplex, showing a LC50 of 0.087 and 0.067 mg mL-1 after 24 and 48 h treatment, respectively. O. syriacum essential oil was highly effective on both larvae and adults of C. quinquefasciatus, showing LC50 values of 32.4 mg L-1 and 28.1 µg cm-2, respectively. Its main constituent, carvacrol, achieved larvicidal LC50(90) of 29.5 and 39.2 mg L-1, while contact toxicity assays on adults had an LC50(90) of 25.5 and 35.8 µg cm-2, respectively. In fumigation assays, the LC50 was 12.1 µL L-1 after 1 h and decreased to 1.3 µL L-1 in 24 h of exposure. Similarly, the fumigation LC50 of carvacrol was 8.2 µL L-1 after 1 h of exposure, strongly decreasing to 0.8 µL L-1 after 24 h of exposure. These results support the folk usage of Lebanese oregano as an antiparasitic agent, providing new insights about its utilization for developing new effective and eco-friendly nematocidal and insecticidal products.
Collapse
|
31
|
Badran A, Baydoun E, Samaha A, Pintus G, Mesmar J, Iratni R, Issa K, Eid AH. Marjoram Relaxes Rat Thoracic Aorta Via a PI3-K/eNOS/cGMP Pathway. Biomolecules 2019; 9:biom9060227. [PMID: 31212721 PMCID: PMC6627793 DOI: 10.3390/biom9060227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Despite pharmacotherapeutic advances, cardiovascular disease (CVD) remains the primary cause of global mortality. Alternative approaches, such as herbal medicine, continue to be sought to reduce this burden. Origanum majorana is recognized for many medicinal values, yet its vasculoprotective effects remain poorly investigated. Here, we subjected rat thoracic aortae to increasing doses of an ethanolic extract of Origanum majorana (OME). OME induced relaxation in a dose-dependent manner in endothelium-intact rings. This relaxation was significantly blunted in denuded rings. N(ω)-nitro-l-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) significantly reduced the OME-induced vasorelaxation. Cyclic guanosine monophosphate (cGMP) levels were also increased by OME. Moreover, wortmannin or LY294002 significantly reduced OME-induced vasorelaxation. Blockers of ATP-sensitive or Ca2+-activated potassium channels such as glibenclamide or tetraethylamonium (TEA), respectively, did not significantly affect OME-induced relaxation. Similarly, verapamil, a Ca2+ channel blocker, indomethacin, a non-selective cyclooxygenase inhibitor, and pyrilamine, a H1 histamine receptor blocker, did not significantly modulate the observed relaxation. Taken together, our results show that OME induces vasorelaxation via an endothelium-dependent mechanism involving the phosphoinositide 3-kinase (PI3-K)/ endothelial nitric oxide (NO) synthase (eNOS)/cGMP pathway. Our findings further support the medicinal value of marjoram and provide a basis for its beneficial intake. Although consuming marjoram may have an antihypertensive effect, further studies are needed to better determine its effects in different vascular beds.
Collapse
Affiliation(s)
- Adnan Badran
- Department of Nutrition, University of Petra, Amman, P.O. Box 961343 Amman 11196, Jordan.
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Ali Samaha
- Department of Biomedical Sciences, Lebanese International University, Beirut, P.O. Box: 146404 Mazraa, Lebanon.
- Faculty of Public Health IV, Lebanese University, Beirut, P.O. Box 6573/14 Badaro, Lebanon.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Qatar University, Doha, P.O. Box 2713, Qatar.
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar.
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates.
| | - Khodr Issa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| |
Collapse
|
32
|
The Neuroprotective Role of Origanum syriacum L. and Lavandula dentata L. Essential Oils through Their Effects on AMPA Receptors. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5640173. [PMID: 31275977 PMCID: PMC6582867 DOI: 10.1155/2019/5640173] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/08/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022]
Abstract
Lavandula dentata L. and Origanum syriacum L. essential oils have numerous health benefits and properties, such as possessing common components with a variant degree of depressive actions in the central nervous system. We investigated the depressive property of these oils on AMPA receptors, which are responsible for most of the fast-excitatory neurotransmission in the CNS and play a critical role in synaptic plasticity. Since excessive activation of AMPARs has been linked to neurotoxicity leading to various pathologies, we hypothesize that these oils have a neuroprotective role by acting directly on the kinetics of AMPARs. Using Gas Chromatography-Mass Spectrometry (GC/MS) and patch-clamp electrophysiology, the essential oils of L. dentata flowers and O. syriacum leaves were characterized and the whole cell currents were measured with and without the administration of the oils onto HEK293 cells. The current study results showed that the biophysical properties of AMPA receptor subunits showed a decrease in desensitization rate of GluA1 and GluA2 homomers, using O. syriacum, while administering L. dentata oil decreased the desensitization rate of GluA1 and GluA2 homomers, as well as GluA1/2 heteromers. As for the deactivation rate, both oils slowed the deactivation kinetics of all AMPA receptor subunits. Intriguingly, between the two oils, the effect of desensitization and deactivation was of a greater significance for L. dentata oil than O. syriacum. Our data suggest that the two oils contain components that are essential to identify, as those active components underlie the oils' neuronal depressive properties reported, and to extract them to synthesize a potent neuroprotective drug to treat neurological diseases potentially.
Collapse
|
33
|
Silva SG, da Costa RA, de Oliveira MS, da Cruz JN, Figueiredo PLB, Brasil DDSB, Nascimento LD, Chaves Neto AMDJ, de Carvalho Junior RN, Andrade EHDA. Chemical profile of Lippia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations. PLoS One 2019; 14:e0213393. [PMID: 30849129 PMCID: PMC6407782 DOI: 10.1371/journal.pone.0213393] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
The essential oils of the fresh and dry flowers, leaves, branches, and roots of Lippia thymoides were obtained by hydrodistillation and analyzed using gas chromatography (GC) and GC-mass spectrometry (MS). The acetylcholinesterase inhibitory activity of the essential oil of fresh leaves was investigated on silica gel plates. The interactions of the key compounds with acetylcholinesterase were simulated by molecular docking and molecular dynamics studies. In total, 75 compounds were identified, and oxygenated monoterpenes were the dominant components of all the plant parts, ranging from 19.48% to 84.99%. In the roots, the main compounds were saturated and unsaturated fatty acids, having contents varying from 39.5% to 32.17%, respectively. In the evaluation of the anticholinesterase activity, the essential oils (detection limit (DL) = 0.1 ng/spot) were found to be about ten times less active than that of physostigmine (DL = 0.01ng/spot), whereas thymol and thymol acetate presented DL values each of 0.01 ng/spot, equivalent to that of the positive control. Based on the docking and molecular dynamics studies, thymol and thymol acetate interact with the catalytic residues Ser203 and His447 of the active site of acetylcholinesterase. The binding free energies (ΔGbind) for these ligands were -18.49 and -26.88 kcal/mol, demonstrating that the ligands are able to interact with the protein and inhibit their catalytic activity.
Collapse
Affiliation(s)
- Sebastião Gomes Silva
- Program of Post-Graduation in Chemistry, Federal University of Pará, Belém, PA, Brazil
| | | | - Mozaniel Santana de Oliveira
- LABEX/FEA (Faculty of Food Engineering), Program of Post-Graduation in Food Science and Technology, Federal University of Para, Belém, PA, Brazil
| | - Jorddy Neves da Cruz
- Laboratory of Preparation and Computation of Nanomaterials, Federal University of Pará, Belém, PA, Brazil
| | - Pablo Luis B. Figueiredo
- Program of Post-Graduation in Chemistry, Federal University of Pará, Belém, PA, Brazil
- Department of Natural Sciences, State University of Pará, Belém, PA, Brazil
| | | | - Lidiane Diniz Nascimento
- Program of Post-Graduation in Engineering of Natural Resources of Amazon, Federal University of Pará, Belém, PA, Brazil
- Adolpho Ducke Laboratory, Botany Coordinating, Museu Paraense Emílio Goeldi, Belém, PA, Brazil
| | - Antônio Maia de Jesus Chaves Neto
- Laboratory of Preparation and Computation of Nanomaterials, Federal University of Pará, Belém, PA, Brazil
- Program of Post-Graduation in Engineering of Natural Resources of Amazon, Federal University of Pará, Belém, PA, Brazil
| | - Raul Nunes de Carvalho Junior
- LABEX/FEA (Faculty of Food Engineering), Program of Post-Graduation in Food Science and Technology, Federal University of Para, Belém, PA, Brazil
- Program of Post-Graduation in Engineering of Natural Resources of Amazon, Federal University of Pará, Belém, PA, Brazil
- * E-mail:
| | - Eloisa Helena de Aguiar Andrade
- Program of Post-Graduation in Chemistry, Federal University of Pará, Belém, PA, Brazil
- Adolpho Ducke Laboratory, Botany Coordinating, Museu Paraense Emílio Goeldi, Belém, PA, Brazil
| |
Collapse
|
34
|
Chemical Variability of the Essential Oil of Origanum ehrenbergii Boiss. from Lebanon, Assessed by Independent Component Analysis (ICA) and Common Component and Specific Weight Analysis (CCSWA). Int J Mol Sci 2019; 20:ijms20051026. [PMID: 30818755 PMCID: PMC6429486 DOI: 10.3390/ijms20051026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022] Open
Abstract
Origanum ehrenbergii Boiss., an endemic plant to Lebanon, is widely acknowledged in Lebanese traditional medicine. The aim of the present study was to evaluate the influence of the drying method, region, and time of harvest on yield and chemical composition of O. ehrenbergii essential oils (EOs). Plants were harvested monthly throughout 2013 and 2014, from two different regions, Aabadiye and Qartaba, then dried using two drying methods: lyophilization and shade-drying at 4 °C. EO was extracted by hydrodistillation and analyzed by GC/MS. GC-MS data, combined with independent component analysis (ICA) and common component and specific weight analysis (CCSWA), showed that drying techniques, region of harvest, and soil composition have no effect on the chemical composition of O. ehrenbergii EOs. Of the factors analyzed, only harvesting time affected the EO composition of this species. High and stable amounts of carvacrol, associated with reliable antimicrobial activities, were detected in material harvested between March and October. EOs obtained from plants harvested in Aabadiye in January and February showed high amounts of thymoquinone, related to anti-inflammatory and cytotoxic effects. The use of ICA and CCSWA was proven to be efficient, and allowed the development of a discriminant model for the classification of O. ehrenbergii chemotype and the determination of the best harvesting time.
Collapse
|
35
|
Neuroprotective and Antiaging Essential Oils and Lipids in Plants. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
El Khoury R, Michael Jubeli R, El Beyrouthy M, Baillet Guffroy A, Rizk T, Tfayli A, Lteif R. Phytochemical screening and antityrosinase activity of carvacrol, thymoquinone, and four essential oils of Lebanese plants. J Cosmet Dermatol 2018; 18:944-952. [PMID: 30291663 DOI: 10.1111/jocd.12754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE In our study, we aim to explore the ability of four essential oils (EO) of Lebanese plants to inhibit the tyrosinase activity and to correlate their efficiency level to their phytochemical compositions. METHODS The EO have been extracted by hydrodistillation using a Clevenger apparatus and have been studied by GC-MS analysis. Active compounds of Origanum species were identified and antityrosinase activities of EO and active molecules (carvacrol and thymoquinone) have been tested in tubo. RESULTS Antityrosinase activities were obtained as follows: EO of Origanum syriacum (80.41% ± 2.00%), EO of Origanum ehrenbergii (45.33% ± 2.20%), EO of Salvia fruticosa (14.62% ± 2.30%), EO of Calamintha origanifolia (16.51% ± 5.80%), Carvacrol (56.55% ± 3.10%), and Thymoquinone (19.49% ± 1.50%). CONCLUSION Origanum essential oils resulted in the highest antityrosinase activity due to their high content in carvacrol. However, when present together with carvacrol, thymoquinone decreases the efficiency of carvacrol, which is the case of O. ehrenbergii essential oil. Thus, for improved antityrosinase activity, O. syriacum and O. ehrenbergii should be harvested during flowering stage where carvacrol is present at its highest dosage and thymoquinone at its lowest.
Collapse
Affiliation(s)
- Rindala El Khoury
- Unité de Technologie et Valorisation Alimentaire, Centre d'Analyses et de Recherche, Université Saint-Joseph, Beirut, Lebanon.,Interdisciplinary Unit: Lipids, Analytical and Biological Systems Lip(Sys), Faculty of Pharmacy, Univ Paris-Sud, Univ Paris-Saclay, Châtenay-Malabry, France.,Obegi Chemicals, Beirut, Lebanon
| | - Rime Michael Jubeli
- Interdisciplinary Unit: Lipids, Analytical and Biological Systems Lip(Sys), Faculty of Pharmacy, Univ Paris-Sud, Univ Paris-Saclay, Châtenay-Malabry, France
| | - Marc El Beyrouthy
- Faculty of Agriculture and Food Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Arlette Baillet Guffroy
- Interdisciplinary Unit: Lipids, Analytical and Biological Systems Lip(Sys), Faculty of Pharmacy, Univ Paris-Sud, Univ Paris-Saclay, Châtenay-Malabry, France
| | - Toufic Rizk
- Unité de Technologie et Valorisation Alimentaire, Centre d'Analyses et de Recherche, Université Saint-Joseph, Beirut, Lebanon
| | - Ali Tfayli
- Interdisciplinary Unit: Lipids, Analytical and Biological Systems Lip(Sys), Faculty of Pharmacy, Univ Paris-Sud, Univ Paris-Saclay, Châtenay-Malabry, France
| | - Roger Lteif
- Unité de Technologie et Valorisation Alimentaire, Centre d'Analyses et de Recherche, Université Saint-Joseph, Beirut, Lebanon
| |
Collapse
|
37
|
Valderrama F, Ruiz F. An optimal control approach to steam distillation of essential oils from aromatic plants. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Beltrán JMG, Espinosa C, Guardiola FA, Esteban MÁ. In vitro effects of Origanum vulgare leaf extracts on gilthead seabream (Sparus aurata L.) leucocytes, cytotoxic, bactericidal and antioxidant activities. FISH & SHELLFISH IMMUNOLOGY 2018; 79:1-10. [PMID: 29729962 DOI: 10.1016/j.fsi.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Origanum vulgare is a well-known medicinal plant that has been used since ancient times as an additive in foods and cosmetic preparations. The possible application of O. vulgare extracts in fish was assessed by using gilthead seabream (Sparus aurata) as a marine fish model due to its importance in aquaculture. The in vitro effects of aqueous and ethanolic leaf extracts of O. vulgare were tested in order to observe any immunostimulant, cytotoxic, bactericidal or antioxidant properties. The results showed that medium or high concentration of aqueous extracts and low concentrations of ethanolic extract, increased head kidney leucocyte activities as well as the number of SAF-1 cells. However, moderate to high concentrations of ethanolic extracts decreased both leucocyte activities and the number of viable SAF-1 cells, suggesting some possible toxic effect towards them. Only the highest concentration of the aqueous extract and medium to high concentrations of the ethanolic extracts showed cytotoxic activity against the tumor PLHC-1 cell line. Bactericidal activity was only detected against Vibrio harveyi, V. anguillarum and Photobacterium damselae when using the highest concentration of aqueous extract and moderate to high concentrations of ethanolic extract. Finally, both plant extracts presented antioxidant activity particularly the aqueous extract. Overall, the results suggest that both extracts (when used at the appropriate concentration) have immunostimulant, cytotoxic, bactericidal and antioxidant properties, making O. vulgare an interesting candidate for incorporation as additive in functional diets for farmed fish.
Collapse
Affiliation(s)
- José María García Beltrán
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Cristóbal Espinosa
- Università degli Studi di Palermo, Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Via G. Barlotta 4, 91100 Trapani, Italy
| | - Francisco A Guardiola
- Fish Nutrition & Immunobiology Group, Centro Interdisciplinar de Investigaçao Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
39
|
Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals. Int J Biol Macromol 2018; 112:7-13. [DOI: 10.1016/j.ijbiomac.2018.01.102] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/02/2017] [Accepted: 01/14/2018] [Indexed: 01/29/2023]
|
40
|
Das M, Pandima Devi K. Neuroprotective and Antiaging Essential Oils and Lipids in Plants. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54528-8_89-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
41
|
Ozdemir N, Ozgen Y, Kiralan M, Bayrak A, Arslan N, Ramadan MF. Effect of different drying methods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9696-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G, Heredia JB. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017; 22:E989. [PMID: 28613267 PMCID: PMC6152729 DOI: 10.3390/molecules22060989] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 02/07/2023] Open
Abstract
Essential oils of oregano are widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Nevertheless, recent investigations have demonstrated that these compounds are also potent antioxidant, anti-inflammatory, antidiabetic and cancer suppressor agents. These properties of oregano essential oils are of potential interest to the food, cosmetic and pharmaceutical industries. The aim of this manuscript is to review the latest evidence regarding essential oils of oregano and their beneficial effects on health.
Collapse
Affiliation(s)
- Nayely Leyva-López
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado km 5.5 Col. El Diez C.P., Culiacán, Sinaloa 80129, Mexico.
| | - Erick P Gutiérrez-Grijalva
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado km 5.5 Col. El Diez C.P., Culiacán, Sinaloa 80129, Mexico.
| | - Gabriela Vazquez-Olivo
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado km 5.5 Col. El Diez C.P., Culiacán, Sinaloa 80129, Mexico.
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado km 5.5 Col. El Diez C.P., Culiacán, Sinaloa 80129, Mexico.
| |
Collapse
|
43
|
Hashemi SMB, Nikmaram N, Esteghlal S, Mousavi Khaneghah A, Niakousari M, Barba FJ, Roohinejad S, Koubaa M. Efficiency of Ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Asadbegi M, Yaghmaei P, Salehi I, Komaki A, Ebrahim-Habibi A. Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet- fed rats. Metab Brain Dis 2017; 32:827-839. [PMID: 28255862 DOI: 10.1007/s11011-017-9960-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/24/2017] [Indexed: 01/28/2023]
Abstract
Obesity and consumption of a high fat diet (HFD) are known to increase the risk of Alzheimer's disease (AD). In the present study, we have examined the protective and therapeutic effects of thymol (main monoterpene phenol found in thyme essential oil) on a HFD-fed rat model of AD. Fourty adult male Wistar rats were randomly assigned to 5 groups:(n = 8 rats/group): group 1, control, consumed an ordinary diet, group 2 consumed a HFD for 8 weeks, then received phosphate-buffered saline (PBS) via intrahippocampal (IHP) injection, group 3 consumed HFD for 8 weeks, then received beta-amyloid (Aβ)1-42 via IHP injections to induce AD, group 4 consumed HFD for 8 weeks, then received Aβ1-42, and was treated by thymol (30 mg/kg in sunflower oil) daily for 4 weeks, and group 5 consumed HFD for 8 week, then received Aβ1-42 after what sunflower oil was administered by oral gavage daily for 4 weeks. Biochemical tests showed an impaired lipid profile and higher glucose levels upon consumption of HFD, which was ameliorated by thymol treatment. In behavioral results, spatial memory in group 3 was significantly impaired, but groups treated with thymol showed better spatial memory compared to group 3 (p ≤ 0.01). In histological results, formation of Aβ plaque in hippocampus of group 3 increased significantly compared to group 1 and group 2 (p ≤ 0.05), but group 4 showed decreased Aβ plaques compared to group 3 (p ≤ 0.01). In conclusion, thymol decreased the effects of Aβ on memory and could be considered as neuroprotective.
Collapse
Affiliation(s)
- Masoumeh Asadbegi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411413137, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Rodriguez-Garcia I, Silva-Espinoza BA, Ortega-Ramirez LA, Leyva JM, Siddiqui MW, Cruz-Valenzuela MR, Gonzalez-Aguilar GA, Ayala-Zavala JF. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit Rev Food Sci Nutr 2017; 56:1717-27. [PMID: 25763467 DOI: 10.1080/10408398.2013.800832] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Food consumers and industries urged the need of natural alternatives to assure food safety and quality. As a response, the use of natural compounds from herbs and spices is an alternative to synthetic additives associated with toxic problems. This review discusses the antimicrobial and antioxidant activity of oregano essential oil (OEO) and its potential as a food additive. Oregano is a plant that has been used as a food seasoning since ancient times. The common name of oregano is given to several species: Origanum (family: Lamiaceae) and Lippia (family: Verbenaceae), amongst others. The main compounds identified in the different OEOs are carvacrol and thymol, which are responsible for the characteristic odor, antimicrobial, and antioxidant activity; however, their content may vary according to the species, harvesting season, and geographical sources. These substances as antibacterial agents make the cell membrane permeable due to its impregnation in the hydrophobic domains, this effect is higher against gram positive bacteria. In addition, the OEO has antioxidant properties effective in retarding the process of lipid peroxidation in fatty foods, and scavenging free radicals. In this perspective, the present review analyzes and discusses the state of the art about the actual and potential uses of OEO as an antimicrobial and antioxidant food additives.
Collapse
Affiliation(s)
- I Rodriguez-Garcia
- a Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC) . La Victoria. Hermosillo , Sonora Mexico
| | - B A Silva-Espinoza
- a Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC) . La Victoria. Hermosillo , Sonora Mexico
| | - L A Ortega-Ramirez
- a Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC) . La Victoria. Hermosillo , Sonora Mexico
| | - J M Leyva
- a Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC) . La Victoria. Hermosillo , Sonora Mexico
| | - M W Siddiqui
- b Department of Food Science and Technology , Bihar Agricultural University , Sabour, Bhagalpur , Bihar India
| | - M R Cruz-Valenzuela
- a Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC) . La Victoria. Hermosillo , Sonora Mexico
| | - G A Gonzalez-Aguilar
- a Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC) . La Victoria. Hermosillo , Sonora Mexico
| | - J F Ayala-Zavala
- a Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD, AC) . La Victoria. Hermosillo , Sonora Mexico
| |
Collapse
|
46
|
Zgheib R, Chaillou S, Ouaini N, Kassouf A, Rutledge D, El Azzi D, El Beyrouthy M. Chemometric Tools to Highlight the Variability of the Chemical Composition and Yield of Lebanese Origanum syriacum L. Essential Oil. Chem Biodivers 2017; 13:1326-1347. [PMID: 27447100 DOI: 10.1002/cbdv.201600061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022]
Abstract
This study deals with the variation in the yield and composition of Lebanese Origanum syriacum L. essential oil (EO) according to harvesting time, drying methods used, and geographical location. Plant material was harvested twice a month all over 2013 and 2014 from Qartaba and Achkout located at high altitude and from Byblos at low altitude. EOs of the aerial parts were obtained by hydrodistillation. The highest yields were obtained at full flowering stage and slightly reduced after flowering. The GC/MS analysis revealed the presence of 50 components representing 90.49 - 99.82%, 88.79 - 100%, and 95.28 - 100% of the total oil extracted from plants harvested from Qartaba, Achkout, and Byblos, respectively. The major components in the oils were: carvacrol (2.1 - 79.8%), thymol (0.3 - 83.7%), p-cymene (2.8 - 43.8%), thymoquinone (0.4 - 27.7%), γ-terpinene (0.4 - 10.0%), octan-3-ol (0.3 - 4.9%), caryophyllene oxide (0.2 - 4.7%), oct-1-en-3-ol (0.3 - 3.7%), β-caryophyllene (0.7 - 3.2%), cis-sabinene hydrate (0.1 - 2.8%), terpinen-4-ol (0.1 - 2.8%), and α-terpinene (0.2 - 2.2%). Independent components analysis (ICA) revealed that two groups were discriminated, reflecting compositional differences in the EOs profiles of the Lebanese oregano samples: O. syriacum grown in Qartaba and Achkout belongs to carvacrol chemotype, while O. syriacum grown in Byblos belongs to thymol chemotype. The flowering phase was the most productive period in terms of yield, bringing marked changes in the EO composition by increasing the amounts of carvacrol or thymol, and decreasing those of thymoquinone and p-cymene.
Collapse
Affiliation(s)
- Raviella Zgheib
- Faculty of Agricultural and Food Sciences, Holy Spirit University of Kaslik, B.P. 446, Jounieh, Lebanon.,Institut Jean-Pierre Bourgin INRA, AgroParisTech, RD 10, Route de Saint-Cyr, Versailles, France
| | - Sylvain Chaillou
- Institut Jean-Pierre Bourgin INRA, AgroParisTech, RD 10, Route de Saint-Cyr, Versailles, France
| | - Naim Ouaini
- Faculty of Agricultural and Food Sciences, Holy Spirit University of Kaslik, B.P. 446, Jounieh, Lebanon
| | - Amine Kassouf
- Department of Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, 90656, Jdeideth El Matn, Fanar, Lebanon
| | - Douglas Rutledge
- UMR1145 Ingénierie Procédés Aliments, AgroParisTech, 16 rue Claude Bernard, FR-75005, Paris.,UMR1145 Ingénierie Procédés Aliments, INRA, 16 rue Claude Bernard, FR-75005, Paris
| | - Desiree El Azzi
- Faculty of Agricultural and Food Sciences, Holy Spirit University of Kaslik, B.P. 446, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Faculty of Agricultural and Food Sciences, Holy Spirit University of Kaslik, B.P. 446, Jounieh, Lebanon.
| |
Collapse
|
47
|
Azab A, Nassar A, Azab AN. Anti-Inflammatory Activity of Natural Products. Molecules 2016; 21:molecules21101321. [PMID: 27706084 PMCID: PMC6274146 DOI: 10.3390/molecules21101321] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
This article presents highlights of the published literature regarding the anti-inflammatory activities of natural products. Many review articles were published in this regard, however, most of them have presented this important issue from a regional, limited perspective. This paper summarizes the vast range of review and research articles that have reported on the anti-inflammatory effects of extracts and/or pure compounds derived from natural products. Moreover, this review pinpoints some interesting traditionally used medicinal plants that were not investigated yet.
Collapse
Affiliation(s)
- Abdullatif Azab
- Institute of Applied Research, The Galilee Society, P.O. Box 437, 20200 Shefa-Amr, Israel.
| | - Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
| | - Abed N Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
- Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
| |
Collapse
|
48
|
Leyva-López N, Nair V, Bang WY, Cisneros-Zevallos L, Heredia JB. Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:302-12. [PMID: 27131433 DOI: 10.1016/j.jep.2016.04.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mexican oregano infusions have been traditionally used in México for the treatment of inflammation-related diseases, such as respiratory and digestive disorders, headaches and rheumatism, among others. Nevertheless, there is limited information regarding the phenolic compounds, terpenes and composition as well as biological activity of Mexican oregano. AIM OF THE STUDY To determine the phenolic and terpene composition and to evaluate the anti-inflammatory potential of three species of Mexican oregano (Lippia graveolens (LG), Lippia palmeri (LP) and Hedeoma patens (HP)) in order to provide a scientific basis for their use. MATERIALS AND METHODS We obtained methanol and chloroform extracts from dried oregano leaves of each species. We used LC-DAD-ESI-MS/MS and GC-MS to determine the phenolic and terpene profiles of the leaves, respectively. We evaluated anti-inflammatory potential by measuring the effect of Mexican oregano extracts on some pro-inflammatory mediators, such as nitric oxide (NO) and reactive oxygen species (ROS) using lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophage cells and evaluating cyclooxygenase activity (COX-1, COX-2). RESULTS Nine phenolic compounds (phenolic acids and flavonoids) and 22 terpenes (monoterpenes and sesquiterpenes) were detected in LG, LP and HP. We studied extracts from LG, LP and HP, and fractions from LG and LP in order to know their effect on some pro-inflammatory mediators. The phenolic and terpene extracts from LG, LP and HP exhibited significant inhibitory effect on ROS and NO production and mitochondrial activity in LPS-induced inflammation in RAW 264.7 macrophage cells. Nitric oxide production was also diminished by the terpene LG fraction LGF2 and the LP fractions LPF1, LPF2 and LPF3, confirming that both monoterpenes and sesquiterpenes are active compounds of oregano. Furthermore, the total extracts of LG, LP and HP exhibited non-selective inhibitions against the activity of the cyclooxygenases COX-1 and COX-2. CONCLUSIONS Our results suggest that Lippia graveolens, Lippia palmeri and Hedeoma patens extracts have the potential to treat inflammatory diseases; their activity is mediated by polyphenols and terpenes. These findings support the claim for their traditional use in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Nayely Leyva-López
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a Eldorado km 5.5 Col. El Diez C.P. 80110, Culiacán, Sinaloa, México
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Woo Young Bang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA; Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2133, USA.
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a Eldorado km 5.5 Col. El Diez C.P. 80110, Culiacán, Sinaloa, México.
| |
Collapse
|
49
|
Al Hafi M, El Beyrouthy M, Ouaini N, Stien D, Rutledge D, Chaillou S. Chemical Composition and Antimicrobial Activity ofOriganum libanoticum,Origanum ehrenbergii, andOriganum syriacumGrowing Wild in Lebanon. Chem Biodivers 2016; 13:555-60. [DOI: 10.1002/cbdv.201500178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/03/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Monay Al Hafi
- Faculty of Agricultural and Food sciences; Holy Spirit University of Kaslik; B.P. 446 Jounieh Lebanon
- Institut Jean-Pierre Bourgin INRA; AgroParisTech; RD 10, Route de Saint-Cyr FR-78026 Versailles
| | - Marc El Beyrouthy
- Faculty of Agricultural and Food sciences; Holy Spirit University of Kaslik; B.P. 446 Jounieh Lebanon
| | - Naim Ouaini
- Faculty of Agricultural and Food sciences; Holy Spirit University of Kaslik; B.P. 446 Jounieh Lebanon
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM); Observatoire Océanologique; Sorbonne Universités; UPMC Univ Paris 06, CNRS; FR-66650 Banyuls-sur-mer
| | - Douglas Rutledge
- Laboratoire de Chimie Analytique; AgroParisTech; UMR INRA/AgroParisTech “GENIAL Ingénierie Procédés Aliments”; FR-75005 Paris
| | - Sylvain Chaillou
- Institut Jean-Pierre Bourgin INRA; AgroParisTech; RD 10, Route de Saint-Cyr FR-78026 Versailles
| |
Collapse
|
50
|
Béjaoui A, Boulila A, Sanaa A, Boussaid M, Fernandez X. Antioxidant Activity andα-Amylase Inhibitory Effect of Polyphenolic-Rich Extract fromOriganum GlandulosumDesf. J Food Biochem 2016. [DOI: 10.1111/jfbc.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Afef Béjaoui
- Laboratory of Plant Biotechnology; National Institute of Applied Science and Technology, Centre Urbain Nord; B.P. 676 1080 Tunis Cedex Tunisia
| | - Abdennacer Boulila
- Laboratory of Natural Substances (LR10INRAP02); National Institute of Research and Physico-chemical Analyses, Biotechpole of Sidi Thabet; Ariana 2020 Tunisia
| | - Adnen Sanaa
- Laboratory of Plant Biotechnology; National Institute of Applied Science and Technology, Centre Urbain Nord; B.P. 676 1080 Tunis Cedex Tunisia
| | - Mohamed Boussaid
- Laboratory of Plant Biotechnology; National Institute of Applied Science and Technology, Centre Urbain Nord; B.P. 676 1080 Tunis Cedex Tunisia
| | - Xavier Fernandez
- Institut de Chimie de Nice; UMR 7272 Université de Nice-Sophia Antipolis, CNRS; Parc Valrose 06108 Nice Cedex 2 France
| |
Collapse
|