1
|
Phan CW, Wang JK, Cheah SC, Naidu M, David P, Sabaratnam V. A review on the nucleic acid constituents in mushrooms: nucleobases, nucleosides and nucleotides. Crit Rev Biotechnol 2017; 38:762-777. [PMID: 29124970 DOI: 10.1080/07388551.2017.1399102] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mushrooms have become increasingly important as a reliable food source. They have also been recognized as an important source of bioactive compounds of high nutritional and medicinal values. The nucleobases, nucleosides and nucleotides found in mushrooms play important roles in the regulation of various physiological processes in the human body via the purinergic and/or pyrimidine receptors. Cordycepin, a 3'-deoxyadenosine found in Cordyceps sinensis has received much attention as it possesses many medicinal values including anticancer properties. In this review, we provide a broad overview of the distribution of purine nucleobases (adenine and guanine); pyrimidine nucleobases (cytosine, uracil, and thymine); nucleosides (uridine, guanosine, adenosine and cytidine); as well as novel nucleosides/tides in edible and nonedible mushrooms. This review also discusses the latest research focusing on the successes, challenges, and future perspectives of the analytical methods used to determine nucleic acid constituents in mushrooms. Besides, the exotic taste and flavor of edible mushrooms are attributed to several nonvolatile and water-soluble substances, including the 5'-nucleotides. Therefore, we also discuss the total flavor 5'-nucleotides: 5'-guanosine monophosphate (5'-GMP), 5'-inosine monophosphate (5'-IMP), and 5'-xanthosine monophosphate (5'-XMP) in edible mushrooms.
Collapse
Affiliation(s)
- Chia-Wei Phan
- a Mushroom Research Centre , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Anatomy, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Joon-Keong Wang
- c Faculty of Medicine and Health Sciences , UCSI University , Kuala Lumpur , Malaysia
| | - Shiau-Chuen Cheah
- c Faculty of Medicine and Health Sciences , UCSI University , Kuala Lumpur , Malaysia
| | - Murali Naidu
- a Mushroom Research Centre , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Anatomy, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Pamela David
- a Mushroom Research Centre , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Anatomy, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Vikineswary Sabaratnam
- a Mushroom Research Centre , University of Malaya , Kuala Lumpur , Malaysia.,d Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
2
|
Tao ZP, Sun LC, Qiu XJ, Cai QF, Liu GM, Su WJ, Cao MJ. Preparation, characterisation and use for antioxidant oligosaccharides of a cellulase from abalone (Haliotis discus hannai) viscera. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3088-3097. [PMID: 26439109 DOI: 10.1002/jsfa.7484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/16/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND In China, abalone (Haliotis discus hannai) production is growing annually. During industrial processing, the viscera, which are abundant of cellulase, are usually discarded or processed into low-value feedstuff. Thus, it is of interest to obtain cellulase from abalone viscera and investigate its application for preparation of functional oligosaccharides. RESULTS A cellulase was purified from the hepatopancreas of abalone by ammonium sulfate precipitation and two-steps column chromatography. The molecular weight of the cellulase was 45 kDa on SDS-PAGE. Peptide mass fingerprinting analysis yielded 103 amino acid residues, which were identical to cellulases from other species of abalone. Substrate specificity analysis indicated that the cellulase is an endo-1,4-β-glucanase. Hydrolysis of seaweed Porphyra haitanensis polysaccharides by the enzyme produced oligosaccharides with degree of polymerisation of two to four, whose monosaccharide composition was 58% galactose, 4% glucose and 38% xylose. The oligosaccharides revealed 2,2'-diphenyl-1-picrylhydrazyl free radical as well as hydrogen peroxide scavenging activity. CONCLUSION It is feasible and meaningful to utilise cellulase from the viscera of abalone for preparation of functional oligosaccharides. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Peng Tao
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Le-Chang Sun
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian Province, 361102, China
| | - Xu-Jian Qiu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Qiu-Feng Cai
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian Province, 361102, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian Province, 361102, China
| | - Wen-Jin Su
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian Province, 361102, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian Province, 361102, China
| |
Collapse
|
3
|
Saglam Ertunga N, Turan A, Akatin MY, Keskin S. Partial Purification and Characterization ofArmillaria melleaβ-Glucosidase. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2012.660720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Akatin MY. Characterization of a β-Glucosidase from an Edible Mushroom,Lycoperdon Pyriforme. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2011.600494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, Pan Y, Yu G, Li Y, Wong BHC, Liang Y, Sun H. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 2013; 8:e56686. [PMID: 23418592 PMCID: PMC3572045 DOI: 10.1371/journal.pone.0056686] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. METHODOLOGY/PRINCIPAL FINDINGS To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. CONCLUSIONS/SIGNIFICANCE This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Bianli Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Molecular Diagnosis Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yijie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yalin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yongfu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guojun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yamu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Barry Hon Cheung Wong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Clinical Immunology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, People's Republic of China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
6
|
Gupta V, Prasanna R, Chaudhary V, Nain L. Biochemical, structural and functional characterization of two novel antifungal endoglucanases from Anabaena laxa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J. Proteins of higher fungi – from forest to application. Trends Biotechnol 2012; 30:259-73. [DOI: 10.1016/j.tibtech.2012.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 12/27/2022]
|
8
|
YILDIRIM AKATIN MELIKE, COLAK AHMET, SAGLAM ERTUNGA NAGIHAN. CHARACTERIZATION OF AN ESTERASE ACTIVITY INLYCOPERDON PYRIFORME, AN EDIBLE MUSHROOM. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00621.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:8. [PMID: 21496218 PMCID: PMC3095537 DOI: 10.1186/1754-6834-4-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/15/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND Hydrolysis of cellulose requires the action of the cellulolytic enzymes endoglucanase, cellobiohydrolase and β-glucosidase. The expression ratios and synergetic effects of these enzymes significantly influence the extent and specific rate of cellulose degradation. In this study, using our previously developed method to optimize cellulase-expression levels in yeast, we constructed a diploid Saccharomyces cerevisiae strain optimized for expression of cellulolytic enzymes, and attempted to improve the cellulose-degradation activity and enable direct ethanol production from rice straw, one of the most abundant sources of lignocellulosic biomass. RESULTS The engineered diploid strain, which contained multiple copies of three cellulase genes integrated into its genome, was precultured in molasses medium (381.4 mU/g wet cell), and displayed approximately six-fold higher phosphoric acid swollen cellulose (PASC) degradation activity than the parent haploid strain (63.5 mU/g wet cell). When used to ferment PASC, the diploid strain produced 7.6 g/l ethanol in 72 hours, with an ethanol yield that achieved 75% of the theoretical value, and also produced 7.5 g/l ethanol from pretreated rice straw in 72 hours. CONCLUSIONS We have developed diploid yeast strain optimized for expression of cellulolytic enzymes, which is capable of directly fermenting from cellulosic materials. Although this is a proof-of-concept study, it is to our knowledge, the first report of ethanol production from agricultural waste biomass using cellulolytic enzyme-expressing yeast without the addition of exogenous enzymes. Our results suggest that combining multigene expression optimization and diploidization in yeast is a promising approach for enhancing ethanol production from various types of lignocellulosic biomass.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Naho Taniguchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tsutomu Tanaka
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hideki Fukuda
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|