1
|
Shu Z, Yan P, Huang L, Dai C, He R, Ma H. Improvement of interfacial, antioxidant, and emulsifying properties of pectin by grafting surfactin. Int J Biol Macromol 2025; 307:142091. [PMID: 40089245 DOI: 10.1016/j.ijbiomac.2025.142091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The changes in structural, interfacial, antioxidant, and emulsifying properties of pectin after grafting surfactin were investigated. Surfactin-pectin conjugate exhibited the highest surface hydrophobicity, approximately 130-fold of surfactin and 1.4-fold of pectin, accompanied by changed FTIR spectra. IC50 for surfactin-pectin to remove DPPH and ABTS radicals was 14.307 and 4.205 mg/mL, lower by 28.32 % and 28.28 % than pectin, respectively. In addition to its strong adsorption capacity at the oil-water interface, surfactin-pectin conjugate demonstrated excellent emulsifying capabilities with EAI and ESI of 62.25 m2/g and 476.20 min, compared to 50.31 m2/g and 381.88 min for pectin, respectively. Grafting surfactin also reduced the particle size of pectin emulsion, thereby improving its stability. The free fat acids release rate of surfactin-pectin conjugate emulsion increased with simulated digestion time, reaching 89.63 % at the end of digestion, much higher than pectin emulsion (35.52 %). Furthermore, surfactin grafting effectively mitigated lipid oxidation in pectin emulsions, as evidenced by a lower peroxide value (74.02 μmol/L) and malondialdehyde content (21.91 mmol/L) after 96 h of storage, compared to 91.8 μmol/L and 26.42 mmol/L for pectin emulsion. These findings highlight surfactin modification as a promising strategy to improve the physicochemical and functional properties of pectin, thereby broadening its potential application.
Collapse
Affiliation(s)
- Zhenzhen Shu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Effect of the Emulsifier Used in Dunaliella salina-Based Nanoemulsions Formulation on the β-Carotene Absorption and Metabolism in Rats. Mol Nutr Food Res 2023; 67:e2200492. [PMID: 36708270 DOI: 10.1002/mnfr.202200492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Indexed: 01/29/2023]
Abstract
SCOPE Microalgae such as Dunaliella salina are a potential sustainable source of natural β-carotene due to their fast growth and high adaptability to environmental conditions. This work aims to evaluate the effect of the incorporation of β-carotene from this alga into different emulsifier-type nanoemulsions (soybean lecithin [SBL], whey protein isolate [WPI], sodium caseinate [SDC]) on its absorption, metabolization, and biodistribution in rats. METHODS AND RESULTS Nanoemulsions formulated with different emulsifiers at 8% concentration are obtained by five cycles of microfluidization at 130 mPa, then expose to an in vitro digestion or orally administer to rats. Feeding rats with nanoemulsions improves β-carotene uptake compared to control suspension, especially using SDC and WPI as emulsifiers. A greater presence of β-carotene and retinol in the intestine, plasma, and liver is observed, being the liver the tissue that shows the highest accumulation. This fact can be a consequence of the smaller droplets that protein-nanoemulsions present compared to that with SBL in the intestine of rats, which promote faster digestibility and higher β-carotene bioaccessibility (35%-50% more) according to the in vitro observations. CONCLUSIONS Nanoemulsions, especially those formulated with protein emulsifiers, are effective systems for increasing β-carotene absorption, as well as retinol concentration in different rat tissues.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| |
Collapse
|
3
|
Li D, Yao X, Gou Q, Cao G, Xu K, Yang Y. In vitro oxidation and digestibility profiles of iron-loaded whey protein isolate/gum Arabic complexes with different morphologies. Food Funct 2023; 14:1227-1237. [PMID: 36621532 DOI: 10.1039/d2fo03204j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study was designed to investigate the promotion of oxidation of lipids in oil-in-water (o/w) emulsions and digestive properties of the bionic dynamic gastrointestinal system of whey protein isolate (WPI) and gum arabic (GA) complexes loaded with iron ions, which were fabricated previously and shown as WPI/GAFe3+ nanoparticles (WGS) and WPI/GAFe3+ fibers (WGF). Compared with emulsions containing Fe3+ and GA-loaded complex (GAFe3+), WGS and WGF greatly improved the oxidative stability of lipids along with the reduced lipid oxidation products and volatile compounds, attributed to the encapsulation of iron ions. During the bionic dynamic gastrointestinal digestion, the iron ion release of WGF was significantly higher than that of WGS, probably due to different assembled internal structures. Accordingly, two proposed WPI/GAFe3+ complexes with different morphologies are expected to be developed as novel stable iron fortifiers with delayed lipid oxidation and controlled iron-ion release in food emulsions.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Qingxia Gou
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Kai Xu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Yongli Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| |
Collapse
|
4
|
Pan W, Gao H, Ying X, Xu C, Ye X, Shao Y, Hua M, Shao J, Zhang X, Fu S, Yang M. Food-derived bioactive oligopeptide iron complexes ameliorate iron deficiency anemia and offspring development in pregnant rats. Front Nutr 2022; 9:997006. [PMID: 36159485 PMCID: PMC9490415 DOI: 10.3389/fnut.2022.997006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate anemia treatment and other potential effects of two food-derived bioactive oligopeptide iron complexes on pregnant rats with iron deficiency anemia (IDA) and their offspring. Rats with IDA were established with a low iron diet and then mated. There were one control group and seven randomly assigned groups of pregnant rats with IDA: Control group [Control, 40 ppm ferrous sulfate (FeSO4)]; IDA model group (ID, 4 ppm FeSO4), three high-iron groups (H-FeSO4, 400 ppm FeSO4; MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron complex) and three low-iron groups (L-FeSO4, 40 ppm FeSO4; MOP-Fe, 40 ppm marine fish oligopeptide iron complex; WOP-Fe, 40 ppm whey protein oligopeptide iron complex). Rats in each group were fed the corresponding special diet during pregnancy until the day of delivery. After different doses of iron supplement, serum hemoglobin, iron, and ferritin levels in rats with IDA were significantly increased to normal levels (P < 0.05). Serum iron levels were significantly lower in two food-derived bioactive oligopeptide low-iron complex groups than in the low FeSO4 group (P<0.05). Liver malondialdehyde levels were significantly increased in the three high-iron groups compared with the other five groups (P < 0.05), and hemosiderin deposition was observed in liver tissue, indicating that the iron dose was overloaded and aggravated the peroxidative damage in pregnant rats. Liver inflammation was reduced in the three low-iron groups. Tumor necrosis factor α secretion was significantly decreased in all groups with supplemented oligopeptide (P < 0.05), with the concentration of tumor necrosis factor α declining to normal levels in the two whey protein oligopeptide iron complex groups. In the marine fish oligopeptide iron complex groups, body length, tail length, and weight of offspring were significantly increased (P < 0.05) and reached normal levels. Therefore, food-derived bioactive oligopeptide (derived from marine fish skin and milk) iron complexes may be an effective type of iron supplement for pregnancy to improve anemia, as well as reduce the side effects of iron overload, and improve the growth and nutritional status of offspring.
Collapse
Affiliation(s)
- Wenfei Pan
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - He Gao
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Ying
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caiju Xu
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Xiang Ye
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yelin Shao
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdi Hua
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Xinxue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Shaowei Fu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Min Yang
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Min Yang
| |
Collapse
|
5
|
Zhou X, Liu Z, Wang W, Miao Y, Gu L, Li Y, Liu X, Jiang L, Hou J, Jiang Z. NaCl induces flocculation and lipid oxidation of soybean oil body emulsions recovered by neutral aqueous extraction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3752-3761. [PMID: 34913174 DOI: 10.1002/jsfa.11723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Soybean oil bodies (SOB) are naturally pre-emulsified lipid droplets recovered directly from soybean seeds. Almost all food emulsions contain salts. However, it was not clear how the incorporation of salts affected the physicochemical stability of SOB. RESULTS This study investigated the effect of NaCl (0-1.2%) on the physical and oxidative stability of SOB emulsions under neutral (pH 7) and acidic (pH 3) conditions. In the presence of NaCl, the SOB emulsion (pH 7) showed strong flocculation during storage due to electrostatic screening. The NaCl-induced flocculation of SOB was attenuated at pH 3, which may be due to the difference in conformation or interaction of the protein interfaces covering SOB at different pH values. The increase in ionic strength or acid conditioning treatment resulted in a remarkable increase in the stability of SOB emulsions against coalescence. The confocal laser scanning microscopy images also confirmed the NaCl-induced changes in the flocculation/coalescence properties of SOB. The oxidative behavior tests indicated that SOB emulsions containing NaCl were more susceptible to lipid oxidation but protein oxidation was inhibited due to electrostatic screening, which reduced pro-oxidant accessibility of unadsorbed proteins in the emulsion. This oxidative behavior was attenuated at pH 3. CONCLUSION The incorporation of NaCl significantly reduced the physical and oxidative stability of the SOB emulsion, and acidic pH mitigated NaCl-induced flocculation and lipid oxidation of SOB. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan Zhou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhijing Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wan Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yusi Miao
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liya Gu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yanan Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Wang Q, Xu Y, Liu Y, Qian F, Mu G, Zhu X. Effects of Proteins and Mineral Ions on the Physicochemical Properties of 1,3-Dioleoyl-2-Palmitoylglycerol Emulsion to Mimic a Liquid Infant Formula. Front Nutr 2022; 9:808351. [PMID: 35769380 PMCID: PMC9234486 DOI: 10.3389/fnut.2022.808351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
Proteins and minerals in infant formula not only serve as nutrients, but also have important effects on the physical and chemical stability of emulsions. In this study, calcium carbonate (0 or 9.08 mM) and potassium chloride (0 or 15.96 mM), as representatives of divalent and monovalent minerals, were added to 1,3-dioleoyl-2-palmitoylglycerol (OPO) emulsions in different ratios (10:0, 9:1, 6:4, 5:5, and 0:10) of whey protein isolate (WPI) and sodium caseinate (CN). The influence of proteins and minerals on emulsion stability was investigated by analyzing particle size, zeta potential, creaming index, rheological properties, storage stability, and lipid oxidation. 1,3-dioleoyl-2-palmitoylglycerol (OPO) emulsions could be destabilized by adding Ca2+, as shown by the increase in particle size index, creaming index, and the decrease in zeta potential magnitude. Divalent ions could affect the electrostatic interactions between lipid droplets and the interactive effects of ion surface adsorption. In addition, the effect of different protein ratios on the physical stability of emulsions was not significant under the same ion-type conditions. In terms of chemical stability, higher oxidized values were found in emulsions stabilized with only CN than in those containing WPI. Our study showed that protein ratios and minerals played an important role in the stability of OPO emulsions, which might provide a reference for the development and utilization of liquid infant formula.
Collapse
Affiliation(s)
- Qi Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yuxi Xu
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yanchen Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- *Correspondence: Guangqing Mu
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Xuemei Zhu
| |
Collapse
|
7
|
Gaigher B, do Nascimento da Silva E, Lacerda Sanches V, Fernanda Milani R, Galland F, Cadore S, Grancieri M, Bertoldo Pacheco MT. Formulations with microencapsulated Fe–peptides improve in vitro bioaccessibility and bioavailability. Curr Res Food Sci 2022; 5:687-697. [PMID: 35465643 PMCID: PMC9019146 DOI: 10.1016/j.crfs.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
The bioaccessibility and the bioavailability of iron complexed to peptides (active) in microparticles forms contained in dry beverages formulations were evaluated. The peptide-iron complexes microparticles were obtained by spray drying and added in three dry formulations (tangerine, strawberry, and chocolate flavors). The peptides isolated by iron ion affinity (IMAC-Fe III) had their biological activity predicted by BIOPEP® database and were evaluated by molecular coupling. The bioaccessibility was evaluated by solubility and dialysability and the bioavalability was assessed by Caco-2 cellular model. The proportion 10:1 of peptide-iron complexes presented higher rates of bioaccessibility (49%) and bioavailability (56%). The microparticle with peptide-iron complex showed greater solubility after digestion (39.1%), bioaccessibility (19.8%), and bioavailability (34.8%) than the ferrous sulfate salt (control) for the three assays (10.2%; 12.9%; 9.7%, respectively). Tangerine and strawberry formulations contributed to the iron absorption according to the results of bioaccessibility (36.2%, 30.0% respectively) and bioavailability (80.5%, 84.1%, respectively). The results showed that iron peptide complexation and microencapsulation process improve the bioaccessibility and bioavailability when incorporated into formulations. Iron solubility is increased in iron peptide complexes. In silico interaction between peptides > 5 KDa and ferric iron (Fe2+). Microparticle with Fe-peptides increase iron bioavailability after digestion. Microparticle formulations improve iron bioaccessibility and bioavailability.
Collapse
|
8
|
|
9
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
10
|
Zhao T, Huang L, Luo D, Xie Y, Zhang Y, Zhang Y, Jiao W, Su G, Zhao M. Fabrication and characterization of anchovy protein hydrolysates-polyphenol conjugates with stabilizing effects on fish oil emulsion. Food Chem 2021; 351:129324. [PMID: 33647694 DOI: 10.1016/j.foodchem.2021.129324] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
Conjugation between peptides and polyphenols could improve their bioactive and functional properties. The improvement effects of anchovy protein hydrolysates (APH) -polyphenol (catechin (CA), gallic acid (GA), tannic acid (TA)) conjugates were investigated. The content of protein and polyphenols and ratio of polyphenols/peptides in conjugates increased as the number of OH group increased with TA > CA > GA. Results showed that APH-CA and APH-GA exhibited the highest ORAC and ABTS+ scavenging capacity, respectively. Mass spectrometry analysis suggested the highest number of bioactive peptides were identified in APH-CA 5:1 (APH/polyphenols). The physical stability of fish oil emulsions during storage was significantly enhanced by TA 5:1 conjugate followed by CA 5:1 conjugate. The oxidative stability was remarkably elevated by APH-GA 10:1. This was due to the antioxidant capacity and the peptides adsorbed at the interfacial. This study demonstrated that APH-polyphenol conjugates could bring the possibility of utilizing peptides-polyphenols in the nutraceutical and functional food ingredient fields.
Collapse
Affiliation(s)
- Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lin Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Yuxi Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yousheng Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Wenjuan Jiao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mouming Zhao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
11
|
Daoud S, Bou-Maroun E, Waschatko G, Horemans B, Mestdagh R, Billecke N, Cayot P. Detection of Lipid Oxidation in Infant Formulas: Application of Infrared Spectroscopy to Complex Food Systems. Foods 2020; 9:E1432. [PMID: 33050270 PMCID: PMC7599773 DOI: 10.3390/foods9101432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Fish- or algal oils have become a common component of infant formula products for their high docosahexaenoic acid (DHA) content. DHA is widely recognized to contribute to the normal development of the infant, and the European Commission recently regulated the DHA content in infant formulas. For many manufacturers of first-age early life nutrition products, a higher inclusion level of DHA poses various challenges. Long-chain polyunsaturated fatty acids (LC-PUFAs) such as DHA are very prone to oxidation, which can alter the organoleptic property and nutritional value of the final product. Traditional methods for the assessment of oxidation in complex systems require solvent extraction of the included fat, which can involve harmful reagents and may alter the oxidation status of the system. A rapid, efficient, non-toxic real-time method to monitor lipid oxidation in complex systems such as infant formula emulsions would be desirable. In this study, infrared spectroscopy was therefore chosen to monitor iron-induced oxidation in liquid infant formula, with conjugated dienes and headspace volatiles measured with GC-MS as reference methods. Infrared spectra of infant formula were recorded directly in mid- and near-infrared regions using attenuated total reflectance Fourier-transform (ATR-FTIR) and near-infrared (NIRS) spectrophotometers. Overall, good correlation coefficients (R2 > 0.9) were acquired between volatiles content and infrared spectroscopy. Despite the complex composition of infant formula containing proteins and sugars, infrared spectroscopy was still able to detect spectral changes unique to lipid oxidation. By comparison, near-infrared spectroscopy (NIRS) presented better results than ATR-FTIR: prediction error ATR-FTIR 18% > prediction error NIRS 9%. Consequently, NIRS demonstrates great potential to be adopted as an in-line or on-line, non-destructive, and sustainable method for dairy and especially infant formula manufacturers.
Collapse
Affiliation(s)
- Samar Daoud
- Unité Mixte “Procédés Alimentaires et Microbiologiques”, Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (E.B.-M.); (P.C.)
| | - Elias Bou-Maroun
- Unité Mixte “Procédés Alimentaires et Microbiologiques”, Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (E.B.-M.); (P.C.)
| | - Gustav Waschatko
- Cargill R&D Centre Europe BVBA Havenstraat 84, B-1800 Vilvoorde, Belgium; (G.W.); (B.H.); (R.M.); (N.B.)
| | - Benjamin Horemans
- Cargill R&D Centre Europe BVBA Havenstraat 84, B-1800 Vilvoorde, Belgium; (G.W.); (B.H.); (R.M.); (N.B.)
| | - Renaud Mestdagh
- Cargill R&D Centre Europe BVBA Havenstraat 84, B-1800 Vilvoorde, Belgium; (G.W.); (B.H.); (R.M.); (N.B.)
| | - Nils Billecke
- Cargill R&D Centre Europe BVBA Havenstraat 84, B-1800 Vilvoorde, Belgium; (G.W.); (B.H.); (R.M.); (N.B.)
| | - Philippe Cayot
- Unité Mixte “Procédés Alimentaires et Microbiologiques”, Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (E.B.-M.); (P.C.)
| |
Collapse
|
12
|
Daoud S, Waschatko G, Bou-Maroun E, Cayot P. Fast, direct and in situ monitoring of lipid oxidation in an oil-in-water emulsion by near infrared spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3098-3105. [PMID: 32930169 DOI: 10.1039/d0ay00583e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipid oxidation has implications on food, cosmetics and other fat containing products. Fatty acid autoxidation alters both the quality and safety of these products. Efficient and fast methods are needed to track lipid oxidation in complex systems. In this study, an oil-in-water emulsion (20% v/v of fish oil stabilized with high oleic sunflower lecithin) was subjected to iron-initiated oxidation. Conjugated dienes (CDs) were measured after fat extraction using a standardized method. Near infrared spectroscopy (NIRS) has been used to record chemical changes occurring during oxidation directly in the emulsion. Variations were noticed in different spectral regions. Partial least squares regression (PLSR) revealed correlations between conjugated diene values and NIRS spectra. High coefficients of determination (R2 = 0.967 and 0.996) were found for calibration and prediction respectively. The CD value was predicted from NIRS spectra with an error of 7.26 mmol eq. LH kg-1 oil (7.8% error). Limits of detection (LOD) and quantification (LOQ) of 4.65 and 15.5 mmol eq. LH kg-1 oil were estimated. NIRS is a rapid and simple method for measuring lipid oxidation (CD value) in an emulsion without prior fat extraction. NIRS can replace the reference methods that use hazardous solvents and consume time. Therefore, NIRS enables in-line monitoring for process and quality control.
Collapse
Affiliation(s)
- Samar Daoud
- Unité Mixte "Procédés Alimentaires et Microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France.
| | - Gustav Waschatko
- Cargill R&D Centre Europe BVBA, Havenstraat 84, B-1800 Vilvoorde, Belgium
| | - Elias Bou-Maroun
- Unité Mixte "Procédés Alimentaires et Microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France.
| | - Philippe Cayot
- Unité Mixte "Procédés Alimentaires et Microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France.
| |
Collapse
|
13
|
Caetano-Silva ME, Netto FM, Bertoldo-Pacheco MT, Alegría A, Cilla A. Peptide-metal complexes: obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Crit Rev Food Sci Nutr 2020; 61:1470-1489. [PMID: 32370550 DOI: 10.1080/10408398.2020.1761770] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive peptides derived from food protein sources have been widely studied in the last years, and scientific researchers have been proving their role in human health, beyond their nutritional value. Several bioactivities have been attributed to these peptides, such as immunomodulatory, antimicrobial, antioxidant, antihypertensive, and opioid. Among them, metal-binding capacity has gained prominence. Mineral chelating peptides have shown potential to be applied in food products so as to decrease mineral deficiencies since peptide-metal complexes could enhance their bioavailability. Furthermore, many studies have been investigating their potential to decrease the Fe pro-oxidant effect by forming a stable structure with the metal and avoiding its interaction with other food constituents. These complexes can be formed during gastrointestinal digestion or can be synthesized prior to intake, with the aim to protect the mineral through the gastrointestinal tract. This review addresses: (i) the amino acid residues for metal-binding peptides and their main protein sources, (ii) peptide-metal complexation prior to or during gastrointestinal digestion, (iii) the function of metal (especially Fe, Ca, and Zn)-binding peptides on the metal bioavailability and (iv) their reactivity and possible pro-oxidant and side effects.
Collapse
Affiliation(s)
| | - Flavia Maria Netto
- Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Daoud S, Bou-Maroun E, Dujourdy L, Waschatko G, Billecke N, Cayot P. Fast and direct analysis of oxidation levels of oil-in-water emulsions using ATR-FTIR. Food Chem 2019; 293:307-314. [PMID: 31151616 DOI: 10.1016/j.foodchem.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
Oxidation of omega-3 fatty acids is a major limitation on its enrichment in food and beverages. An efficient and simple method to monitor lipid oxidation in complex systems is essential to limit lipid oxidation during formulation and processing. Fish oil-in-water emulsions (20% v/v) were exposed to iron or free radical initiated oxidation. Conjugated dienes (CDs) were rapidly measured using a previously developed fat extraction method. Fourier transform infrared (FTIR) spectroscopy has been used to directly record chemical changes occurring during oxidation. Variations were noticed in different spectral regions despite the presence of broad water bands near 3400 and 1640 cm-1. Partial least squares regression (PLSR) revealed correlations between CD values and full FTIR spectra (4000-600 cm-1), and different spectral regions (e.g., 1800-1500 cm-1, 1500-900 cm-1). These correlations confirm that FTIR spectroscopy is a rapid and simple method for measuring lipid oxidation in complex foods without prior fat extraction.
Collapse
Affiliation(s)
- Samar Daoud
- Unité mixte "Procédés alimentaires et microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France.
| | - Elias Bou-Maroun
- Unité mixte "Procédés alimentaires et microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Laurence Dujourdy
- Service d'Appui à la recherche, AgroSup Dijon, F-21000 Dijon, France
| | - Gustav Waschatko
- Cargill R&D Centre Europe BVBA, Havenstraat 84, B-1800 Vilvoorde, Belgium
| | - Nils Billecke
- Cargill R&D Centre Europe BVBA, Havenstraat 84, B-1800 Vilvoorde, Belgium
| | - Philippe Cayot
- Unité mixte "Procédés alimentaires et microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
15
|
Okubanjo SS, Loveday SM, Ye A, Wilde PJ, Singh H. Droplet-Stabilized Oil-in-Water Emulsions Protect Unsaturated Lipids from Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2626-2636. [PMID: 30608676 DOI: 10.1021/acs.jafc.8b02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Droplet-stabilized emulsions use fine protein-coated lipid droplets (the shell) to emulsify larger droplets of a second lipid (the core). This study investigated the oxidation resistance of polyunsaturated fatty acid (PUFA) oil within droplet-stabilized emulsions, using shell lipids with a range of melting points: olive oil (low melting), trimyristin (high-melting), and palmolein oil (intermediate melting point). Oxidation of PUFA oil was accelerated with a fluorescent lamp in the presence of ferrous iron (100 μM) for 9 days, and PUFA oxidation was monitored via conjugated dienes, lipid hydroperoxides, and hexanal levels. Oxidation was slower in droplet-stabilized emulsions than in conventional emulsions or control emulsions of the same composition as droplet-stabilized emulsions but different structure, and trimyristin gave the greatest oxidation resistance. Results suggest the structured interface of droplet-stabilized emulsions limits contact between pro-oxidants and oxidation-sensitive bioactives encapsulated within, and this antioxidative effect is greatly enhanced with solid surface lipids.
Collapse
Affiliation(s)
- Sewuese S Okubanjo
- Riddet Institute , Massey University , Private Bag 11222, Palmerston North 4442 , New Zealand
| | - Simon M Loveday
- Riddet Institute , Massey University , Private Bag 11222, Palmerston North 4442 , New Zealand
- Food and Bio-based Products Group , AgResearch Limited , Tennent Drive , Private Bag 11008, Palmerston North 4442 , New Zealand
| | - Aiqian Ye
- Riddet Institute , Massey University , Private Bag 11222, Palmerston North 4442 , New Zealand
| | - Peter J Wilde
- Quadram Institute Bioscience , Norwich Research Park , Norwich , Norfolk NR4 7UA , United Kingdom
| | - Harjinder Singh
- Riddet Institute , Massey University , Private Bag 11222, Palmerston North 4442 , New Zealand
| |
Collapse
|
16
|
Caetano-Silva ME, Cilla A, Bertoldo-Pacheco MT, Netto FM, Alegría A. Evaluation of in vitro iron bioavailability in free form and as whey peptide-iron complexes. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
|
18
|
Caetano-Silva ME, Barros Mariutti LR, Bragagnolo N, Bertoldo-Pacheco MT, Netto FM. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1981-1989. [PMID: 29397714 DOI: 10.1021/acs.jafc.7b04873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO4 or FeCl2) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.
Collapse
Affiliation(s)
- Maria Elisa Caetano-Silva
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, UNICAMP , 13083-862 Campinas, SP, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, UNICAMP , 13083-862 Campinas, SP, Brazil
| | - Neura Bragagnolo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, UNICAMP , 13083-862 Campinas, SP, Brazil
| | | | - Flavia Maria Netto
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, UNICAMP , 13083-862 Campinas, SP, Brazil
| |
Collapse
|
19
|
Qiu C, Zhao M, Decker EA, McClements DJ. Influence of anionic dietary fibers (xanthan gum and pectin) on oxidative stability and lipid digestibility of wheat protein-stabilized fish oil-in-water emulsion. Food Res Int 2015; 74:131-139. [DOI: 10.1016/j.foodres.2015.04.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 02/04/2023]
|
20
|
Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chem 2015; 175:249-57. [DOI: 10.1016/j.foodchem.2014.11.112] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/29/2014] [Accepted: 11/19/2014] [Indexed: 11/22/2022]
|
21
|
Berton-Carabin CC, Ropers MH, Genot C. Lipid Oxidation in Oil-in-Water Emulsions: Involvement of the Interfacial Layer. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12097] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Claude Genot
- INRA; UR1268 Biopolymères Interactions Assemblages; F-44316 Nantes France
| |
Collapse
|
22
|
Mann GR, Duncan SE, Knowlton KF, Dietrich AD, O'Keefe SF. Effects of mineral content of bovine drinking water: does iron content affect milk quality? J Dairy Sci 2013; 96:7478-89. [PMID: 24140329 DOI: 10.3168/jds.2013-7083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/24/2013] [Indexed: 12/28/2022]
Abstract
The composition of water given to dairy cattle is often ignored, yet water is a very important nutrient and plays a major role in milk synthesis. The objective of this study was to study effects of elevated levels of iron in bovine drinking water on milk quality. Ferrous lactate treatments corresponding to 0, 2, 5, and 12.5mg/kg drinking water concentrations were delivered through the abomasum at 10 L/d to 4 lactating dairy cows over 4 periods (1 wk infusion/period) in a Latin square design. On d 6 of infusion, milk was collected, processed (homogenized, pasteurized), and analyzed. Mineral content (Fe, Cu, P, Ca) was measured by inductively coupled plasma mass spectrometry. Oxidative stability of whole processed milk was measured by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde (MDA) and sensory analysis (triangle test) within 72 h of processing and after 7d of storage (4°C). Significant sensory differences between processed milks from cows receiving iron and the control infusion were observed. No differences in TBARS (1.46±0.04 mg of MDA/kg) or mineral content (0.22±0.01 mg/kg Fe) were observed. A 2-way interaction (iron treatment by cow) for Ca, Cu, and Fe concentrations was seen. While iron added directly to milk causes changes in oxidation of milk, high levels of iron given to cattle have subtle effects that initially may not be obvious.
Collapse
Affiliation(s)
- G R Mann
- Department of Food Science and Technology
| | | | | | | | | |
Collapse
|
23
|
Prieto MA, Rodríguez-Amado I, Vázquez JA, Murado MA. β-Carotene assay revisited. application to characterize and quantify antioxidant and prooxidant activities in a microplate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8983-8993. [PMID: 22849655 DOI: 10.1021/jf302218g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The β-carotene bleaching assay, a common method for evaluating antioxidant activity, has been widely criticized due to its low reproducibility, problematic quantification, complex reagent preparation, and interference of different factors (temperature, pH, solvents, and metals). In this work we have examined the effects of these factors and developed a highly reproducible procedure for microplate assay, evaluated the critical points of the method, and proposed a kinetic model for quantifying both antioxidant and prooxidant activities. The application of these tools produced very consistent results, which provide robust and meaningful criteria to compare in detail the characteristics of several well-known commercial antioxidants, as well as several predictable prooxidants, and can be easily applied to natural extracts, food samples, and many other type of compounds. As an example, we have tested a set of commercial antioxidants and some typical lipophilic prooxidants. The activity of the tested antioxidants decreased in the following order: ethoxyquin ≫ α-tocopherol > butylhydroxyanisole > butylhydroxytoluene ≫ propyl gallate. On the other hand, hemoglobin and Fe(2+), Fe(3+), Co(2+), and Cu(2+) showed a strong prooxidant effect, and the activity was null in Cd(2+), Ni(2+), and Sr(2+), slightly antioxidant in Mg(2+), and strongly antioxidant in Zn(2+) and Mn(2+).
Collapse
Affiliation(s)
- M A Prieto
- Grupo de Reciclado e Valorización de Materiais Residuais (REVAL), Instituto de Investigacións Mariñas (CSIC) , r/Eduardo Cabello 6, Vigo-36208, Galicia, Spain. . e s
| | | | | | | |
Collapse
|
24
|
Oxidative stability of oil-in-water emulsions stabilised with protein or surfactant emulsifiers in various oxidation conditions. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.137] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Influence of interfacial composition on oxidative stability of oil-in-water emulsions stabilized by biopolymer emulsifiers. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.128] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|