1
|
Zhang T, Yang Z, Zhang Y, Yi L, Duan F, Zhao Q, Gu Y, Wang S. Proteomics-guided isolation of a novel serine protease with milk-clotting activity from tamarillo (Solanum betaceum Cav.). Food Chem 2025; 465:141956. [PMID: 39541676 DOI: 10.1016/j.foodchem.2024.141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Tamarillo is widely grown in Yunnan Province, China, and has been found that it can be used in cheese-making with a distinctive fruity flavour. However, this primary component responsible for curdling milk remains unclear. This study aimed to identify the main component in tamarillo responsible for curdling milk using proteomics and ammonium sulfate (AS) precipitation. Herein, 3199 proteins were identified in tamarillo, of which 546 exhibited hydrolase activity. In particular, a novel serine protease with milk-clotting activity (MCA) and a molecular weight of 79.1 kDa, named "MCP746", was isolated from tamarillo. The milk-clotting proteases (MCPs) from tamarillo exhibited the highest MCA at 80 °C and stability under incubation temperatures below 70 °C, pH range of 5-8, and NaCl concentrations below 1 mol/L. This study revealed that serine protease is the primary MCPs of tamarillo along with a characterization of its milk-clotting characteristics, providing valuable insights into its potential application in cheese-making.
Collapse
Affiliation(s)
- Tong Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhihong Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingcui Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fengmin Duan
- Yunnan Institute of Measuring and Testing Technology, Kunming 650228, China
| | - Qiong Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Shuo Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Zhang X, Tao L, Wei G, Yang M, Wang Z, Shi C, Shi Y, Huang A. Plant-derived rennet: research progress, novel strategies for their isolation, identification, mechanism, bioactive peptide generation, and application in cheese manufacturing. Crit Rev Food Sci Nutr 2023; 65:444-456. [PMID: 37902764 DOI: 10.1080/10408398.2023.2275295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Rennet, an aspartate protease found in the stomach of unweaned calves, effectively cuts the peptide bond between Phe105-Met106 in κ-casein, hydrolyzing the casein micelles to coagulate the milk and is a crucial additive in cheese production. Rennet is one of the most used enzymes of animal origin in cheese making. However, using rennet al.one is insufficient to meet the increasing demand for cheese production worldwide. Numerous studies have shown that plant rennet can be an alternative to bovine rennet and exhibit a good renneting effect. Therefore, it is crucial and urgent to find a reliable plant rennet. Based on our team's research on rennet enzymes of plant origin, such as from Dregea sinensis Hemsl. and Moringa oleifer Lam., for more than ten years, this paper reviews the relevant literature on rennet sources, isolation, identification, rennet mechanism, functional active peptide screening, and application in cheese production. In addition, it proposes the various techniques for targeted isolation and identification of rennet and efficient screening of functionally active peptides, which show excellent prospects for development.
Collapse
Affiliation(s)
- Xueting Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Leulmi I, Zidoune MN, Hafid K, Djeghim F, Bourekoua H, Dziki D, Różyło R. New Coagulant Proteases for Cheesemaking from Leaves and Latex of the Spontaneous Plant Pergularia tomentosa: Biochemical Characterization of Coagulants and Sensorial Evaluation of Cheese. Foods 2023; 12:2467. [PMID: 37444205 DOI: 10.3390/foods12132467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to evaluate the caseinolytic and milk-clotting activities of aqueous crude extracts from leaves and latex of the Pergularia tomentosa, to determine their suitability as a rennet substitute. These extracts were subjected to a series of biochemical tests before being used in the production of cheese. The results showed that the enzymatic latex extract had a higher coagulant activity than the leaf extract. However, under different clotting conditions (pH, temperature, and CaCl2 concentration), both coagulants behaved similarly in the coagulation of Berridge substrate. The SDS-PAGE and zymographic analysis revealed identical protein bands with a single active zone in both extracts, corresponding to a molecular weight of 26.98 kDa and 26.03 kDa in the extract of leaf and latex, respectively. Both extracts were stable to different effectors but strongly inhibited by iodoacetamide and Hg, suggesting it to be a cysteine protease. Both extracts were able to hydrolyze casein and generate peptides of 14 kDa, with excessive hydrolysis of the other casein fractions. The physicochemical parameters of cheese made from latex and leaf extract evolved similarly to control cheese. According to the sensory evaluation, cheese made with latex had a mildly bitter flavor but showed a high acceptance rate (>80%).
Collapse
Affiliation(s)
- Imene Leulmi
- Equipe de Transformation et d'Elaboration des Produits Agro-Alimentaires, Laboratoire de Nutrition et de Technologie Alimentaire, Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires, Université des Frères Mentouri-Constantine 1, Route de Ain El-Bey, Constantine 25000, Algeria
| | - Mohammed Nasreddine Zidoune
- Equipe de Transformation et d'Elaboration des Produits Agro-Alimentaires, Laboratoire de Nutrition et de Technologie Alimentaire, Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires, Université des Frères Mentouri-Constantine 1, Route de Ain El-Bey, Constantine 25000, Algeria
| | - Kahina Hafid
- Equipe Maquav, Laboratoire de Recherche Biotechnologie et Qualité des Aliments, Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires, Université Frères Mentouri-Constantine 1, Route de Ain El-Bey, Constantine 25000, Algeria
| | - Fairouz Djeghim
- Equipe de Transformation et d'Elaboration des Produits Agro-Alimentaires, Laboratoire de Nutrition et de Technologie Alimentaire, Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires, Université des Frères Mentouri-Constantine 1, Route de Ain El-Bey, Constantine 25000, Algeria
| | - Hayat Bourekoua
- Equipe de Transformation et d'Elaboration des Produits Agro-Alimentaires, Laboratoire de Nutrition et de Technologie Alimentaire, Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires, Université des Frères Mentouri-Constantine 1, Route de Ain El-Bey, Constantine 25000, Algeria
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| |
Collapse
|
4
|
Zaman U, Khan SU, Alem SFM, Rehman KU, Almehizia AA, Naglah AM, Al-Wasidi AS, Refat MS, Saeed S, Zaki MEA. Purification and thermodynamic characterization of acid protease with novel properties from Melilotus indicus leaves. Int J Biol Macromol 2023; 230:123217. [PMID: 36634806 DOI: 10.1016/j.ijbiomac.2023.123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
A thermostable acid protease from M. indicus leaves was purified 10-fold using a 4-step protocol. We were able to isolate a purified protease fraction with a molecular weight of 50 kDa and exhibited maximal protease activity at pH 4.0 and 40 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. The addition of epoxy monocarboxylic acid, iodoacetic acid, and dimethyl sulfoxide significantly reduced protease activity while dramatically increasing the inhibition of Mn2+, Fe2+, and Cu2+. The activation energy of the hydrolysis reaction (33.33 kJ mol-1) and activation energy (Ed = 105 kJ mol-1), the standard enthalpy variation of reversible protease unfolding (2.58 kJ/mol) were calculated after activity measurements at various temperatures. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50 °C, 60 °C, and 70 °C was 385, 231, and 154 min, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by M. indicus. The novel protease appears to be particularly thermostable and may be important for industrial applications based on these thermodynamic properties.
Collapse
Affiliation(s)
- Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KPK, Pakistan; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
5
|
Nájera-Domínguez C, Gutiérrez-Méndez N, Carballo-Carballo DE, Peralta-Pérez MR, Sánchez-Ramírez B, Nevarez-Moorillón GV, Quintero-Ramos A, García-Triana A, Delgado E. Milk-Gelling Properties of Proteases Extracted from the Fruits of Solanum Elaeagnifolium Cavanilles. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4625959. [PMID: 36304441 PMCID: PMC9596257 DOI: 10.1155/2022/4625959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
There is little information on the milk coagulation process by plant proteases combined with chymosins. This work is aimed at studying the capability of protease enclosed in the ripe fruits of Solanum elaeagnifolium (commonly named trompillo) to form milk gels by itself and in combination with chymosin. For this purpose, proteases were partially purified from trompillo fruits. These proteases had a molecular weight of ~60 kDa, and results suggest cucumisin-like serine proteases, though further studies are needed to confirm this observation. Unlike chymosins, trompillo proteases had high proteolytic activity (PA = 50.23 UTyr mg protein-1) and low milk-clotting activity (MCA = 3658.86 SU mL-1). Consequently, the ratio of MCA/PA was lower in trompillo proteases (6.83) than in chymosins (187 to 223). Our result also showed that milk gels formed with trompillo proteases were softer (7.03 mPa s) and had a higher release of whey (31.08%) than the milk gels clotted with chymosin (~10 mPa s and ~4% of syneresis). However, the combination of trompillo proteases with chymosin sped up the gelling process (21 min), improved the firmness of milk gels (12 mPa s), and decreased the whey release from milk curds (3.41%). Therefore, trompillo proteases could be combined with chymosin to improve the cheese yield and change certain cheese features.
Collapse
Affiliation(s)
- Carolina Nájera-Domínguez
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Néstor Gutiérrez-Méndez
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Diego E. Carballo-Carballo
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - María Rosario Peralta-Pérez
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Blanca Sánchez-Ramírez
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | | | - Armando Quintero-Ramos
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Antonio García-Triana
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Efren Delgado
- Consumer and Environmental Sciences, College of Agricultural, New Mexico State University, New Mexico, USA
| |
Collapse
|
6
|
Nicosia FD, Puglisi I, Pino A, Caggia C, Randazzo CL. Plant Milk-Clotting Enzymes for Cheesemaking. Foods 2022; 11:871. [PMID: 35327293 PMCID: PMC8949083 DOI: 10.3390/foods11060871] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
The reduced availability and the increasing prices of calf rennet, coupled to the growing global demand of cheese has led, worldwide, to explore alternative clotting enzymes, capable to replace traditional rennet, during the cheesemaking. In addition, religious factors and others related to the vegetarianism of some consumers, have led to alternative rennet substitutes. Nowadays, several plant-derived milk-clotting enzymes are available for cheesemaking technology. Many efforts have also been made to compare their effects on rheological and sensory properties of cheese to those arising from animal rennet. However, vegetable clotting enzymes are still partially suitable for cheesemaking, due to excessive proteolytic activity, which contribute to bitter flavor development. This review provides a literature overview of the most used vegetable clotting enzymes in cheese technology, classified according to their protease class. Finally, clotting and proteolytic activities are discussed in relation to their application on the different cheesemaking products.
Collapse
Affiliation(s)
- Fabrizio Domenico Nicosia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
| | - Ivana Puglisi
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
| | - Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
- ProBioEtna, Spin-off of University of Catania, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
- ProBioEtna, Spin-off of University of Catania, 95123 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (I.P.); (A.P.); (C.C.)
- ProBioEtna, Spin-off of University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Murugesu S, Selamat J, Perumal V. Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. PLANTS (BASEL, SWITZERLAND) 2021; 10:2749. [PMID: 34961220 PMCID: PMC8707271 DOI: 10.3390/plants10122749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 05/23/2023]
Abstract
Ficus is one of the largest genera in the plant kingdom that belongs to the Moraceae family. This review aimed to summarize the medicinal uses, phytochemistry, and pharmacological actions of two major species from this genus, namely Ficus benghalensis and Ficus religiosa. These species can be found abundantly in most Asian countries, including Malaysia. The chemical analysis report has shown that Ficus species contained a wide range of phytoconstituents, including phenols, flavonoids, alkaloids, tannins, saponins, terpenoids, glycosides, sugar, protein, essential and volatile oils, and steroids. Existing studies on the pharmacological functions have revealed that the observed Ficus species possessed a broad range of biological properties, including antioxidants, antidiabetic, anti-inflammatory, anticancer, antitumor and antiproliferative, antimutagenic, antimicrobial, anti-helminthic, hepatoprotective, wound healing, anticoagulant, immunomodulatory activities, antistress, toxicity studies, and mosquitocidal effects. Apart from the plant parts and their extracts, the endophytes residing in these host plants were discussed as well. This study also includes the recent applications of the Ficus species and their plant parts, mainly in the nanotechnology field. Various search engines and databases were used to obtain the scientific findings, including Google Scholar, ScienceDirect, PMC, Research Gate, and Scopus. Overall, the review discusses the therapeutic potentials discovered in recent times and highlights the research gaps for prospective research work.
Collapse
Affiliation(s)
- Suganya Murugesu
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Jinap Selamat
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Vikneswari Perumal
- Faculty of Pharmacy & Health Sciences, University of Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| |
Collapse
|
8
|
Hachana Y, Aloui O, Fortina R. Use of caprifig tree extract as a substitute for calf rennet in goat’s fresh cheese production. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Gawande V, Morlock G. Effect-directed profiling of Ficus religiosa leaf extracts for multipotent compounds via 12 effect-directed assays. J Chromatogr A 2020; 1637:461836. [PMID: 33422795 DOI: 10.1016/j.chroma.2020.461836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
The interest in the therapeutic values of natural compounds from plants is growing worldwide because the development of modern synthetic drugs has not lived up to expectations. The tree Ficus religiosa native to India, China and Southeast Asia is traditionally used for curing almost 50 ailments, although the majority of the individual active compounds are not known. Hence, a hyphenated high-performance thin-layer chromatography (HPTLC) method was newly developed. It allowed a physicochemical, but especially effect-directed profiling of individual compounds present in Ficus religiosa leaves obtained from four locations (in India and Germany). Extracts of different polarities were screened for bioactivity responses and most bioactivities were found in the ethyl acetate extracts. A multi-imaging via 26 different detection modes was performed, i. e. UV/Vis/FLD, 11 microchemical derivatizations and 12 effect-directed assays (EDA). By HPTLC-UV/Vis/FLD-EDA, antibiotics against Gram-positive and Gram-negative bacteria as well as acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase, α-glucosidase and β-glucosidase inhibitors and radical scavenging compounds were detected. Estrogen-like or gentotoxic compounds were not detected at higher extract amounts of even 5 mg/band applied. For further characterization of three most important, multipotent, bioactive compound zones, HPTLC was hyphenated with heated electrospray ionization high-resolution mass spectrometry including fragmentation (HPTLC-HESI-HRMS/MS). Multipotent bioactive compounds discovered in the extracts were equivalently calculated in reference to well-known reference inhibitors.
Collapse
Affiliation(s)
- Vandana Gawande
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany; STES's Sinhgad Institute of Pharmacy, Department of Pharmaceutical Chemistry, Off. Smt. Kashibai Navale Hospital, Narhe, Pune, Maharashtra 411041, India
| | - Gertrud Morlock
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| |
Collapse
|
10
|
Reyes Jara AM, Corrons MA, Salese L, Liggieri CS, Bruno MA. Peptidases from Maclura Pomifera for Preparation of Food Protein Hydrolysates: Purification by Single-Step Chromatography and Characterization of Pomiferin I. Appl Biochem Biotechnol 2020; 193:619-636. [PMID: 33047217 DOI: 10.1007/s12010-020-03438-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
Our objective was to isolate peptidases from the latex of Maclura pomifera fruits and use them to hydrolyze food proteins, as well as to purify and characterize the main peptidase. Two partially purified proteolytic extracts were prepared by ethanol (EE) and acetone (AE) precipitation from an aqueous suspension of exuded fruit latex. EE was used to hydrolyze food proteins with a ratio of 0.19 caseinolytic units (Ucas) per mg of substrate. Different values of hydrolysis degree were observed for hydrolysates of egg white, soy protein isolate, and casein at 180 min (9.3%, 31.1%, and 29.1%, respectively). AE was employed to purify a peptidase which exhibited an isoelectric point (pI) of 8.70 and whose abundance in AE was 28.3%. This enzyme was purified to homogeneity using a single-step procedure by cation-exchange chromatography, achieving an 8.1-fold purification and a yield of 16.7%. The peptidase was named pomiferin I and showed a molecular mass of 63,177.77 Da. Kinetic constants (KM 0.84 mM, Vmax 27.50 uM s-1, kcat 72.37 s-1, and kcat/KM 86.15 mM-1 s-1) were determined employing N-α-carbobenzoxy-L-alanyl-p-nitrophenyl ester as substrate. Analysis by PMF showed only partial homology of pomiferin I with a serine peptidase from a species of the same family.
Collapse
Affiliation(s)
- Andrea Milagros Reyes Jara
- Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Buenos Aires, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP), CONICET, 113 and 61, 1900, La Plata, Argentina
| | - María Alicia Corrons
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 and 115, 1900, La Plata, Argentina
| | - Lucía Salese
- Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Buenos Aires, Argentina
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 and 115, 1900, La Plata, Argentina
| | - Constanza Silvina Liggieri
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 and 115, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata, Argentina
| | - Mariela Anahí Bruno
- Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Buenos Aires, Argentina.
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 and 115, 1900, La Plata, Argentina.
| |
Collapse
|
11
|
Kumar A, Sasmal S. Rheological and physico-chemical properties of milk gel using isolate of pumpkin (Cucurbita moschata) seeds: A new source of milk clotting peptidase. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
de Farias VA, da Rocha Lima AD, Santos Costa A, de Freitas CDT, da Silva Araújo IM, Dos Santos Garruti D, de Figueiredo EAT, de Oliveira HD. Noni (Morinda citrifolia L.) fruit as a new source of milk-clotting cysteine proteases. Food Res Int 2019; 127:108689. [PMID: 31882081 DOI: 10.1016/j.foodres.2019.108689] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022]
Abstract
This work reports the characterisation of caseinolytic and milk-clotting activities of proteases extracted from ripe fruits of Morinda citrifolia L., as a potential of their use in cheese production. Noni puree extract (NPE) was obtained by homogenising the fresh puree in 150 mM NaCl/50 mM sodium phosphate buffer (pH 7.0). The resulting protein concentration was of 0.367 ± 0.006 mg/mL, and an electrophoretic profile of the extract revealed protein bands ranging from 14 to 55 kDa. The proteolytic activity of NPE was higher when the extract had been previously incubated at pH 6.0 (8.859 ± 0.216 U/mg), whereas the optimum caseinolytic activity was observed at 50 °C. Noni puree proteases were strongly (98%) inhibited by iodoacetamide and E-64, suggesting the presence of only cysteine proteases in the crude extract. NPE proteases showed a milk-clotting activity (MCA) of 238.80 ± 5.29 U/mL, a specific milk-clotting activity (SMCA) of 9950.17 ± 220.74 U/mg, and an SMCA/PA ratio of 1124.31 ± 24.94, this last being comparable to those of commercial calf rennet. The cheese manufactured using NPE presented brittle and soft texture, high humidity, and showed sanitary conditions compatible with current Brazilian regulations. The product showed a slightly bitter taste, but still good acceptability, rating between 6 and 7 in the hedonic scale for flavour, texture, and overall acceptance. Lastly, there was 60% of positive purchase intent, demonstrating that noni fruit is a promising source of milk-clotting enzymes for the dairy industry.
Collapse
Affiliation(s)
- Vilmara Albuquerque de Farias
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, 60.440-900 Fortaleza, CE, Brazil
| | - Amanda Dias da Rocha Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, 60.440-900 Fortaleza, CE, Brazil
| | - Andréa Santos Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, 60.440-900 Fortaleza, CE, Brazil
| | - Cléverson Diniz T de Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, 60.440-900 Fortaleza, CE, Brazil
| | | | | | | | - Hermógenes David de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, 60.440-900 Fortaleza, CE, Brazil.
| |
Collapse
|
13
|
Shi Y, Prabakusuma AS, Zhao Q, Wang X, Huang A. Proteomic analysis of Moringa oleifera Lam. leaf extract provides insights into milk-clotting proteases. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Afsharnezhad M, Shahangian SS, Sariri R. A novel milk-clotting cysteine protease from Ficus johannis: Purification and characterization. Int J Biol Macromol 2019; 121:173-182. [DOI: 10.1016/j.ijbiomac.2018.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
|
15
|
Isolation and Screening of Extracellular Protease Enzyme from Fungal Isolates of Soil. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Protease activity of enzyme extracts from tamarillo fruit and their specific hydrolysis of bovine caseins. Food Res Int 2018; 109:380-386. [DOI: 10.1016/j.foodres.2018.04.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/27/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
|
17
|
Three phase partitioning to concentrate milk clotting proteases from Wrightia tinctoria R. Br and its characterization. Int J Biol Macromol 2018; 118:279-288. [PMID: 29894788 DOI: 10.1016/j.ijbiomac.2018.06.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023]
Abstract
Wrightia tinctoria stem proteases were partially purified for the first time through a non-chromatographic technique, three phase partitioning (TPP), to concentrate the milk clotting proteases. Various parameters like salt and solvent concentration that affect the partitioning of the protease were examined. Maximum recovery and purification fold of the protease activity were found in the interfacial phase (IP) with 60% ammonium sulphate and 1:1 crude enzyme to t-butanol. Optimum pH and temperature of the enzyme fraction were found to be 7.5 and 50 °C respectively. Inhibition studies revealed its serine nature. Non-denaturing PAGE, Zymography and 2D PAGE of IP revealed presence of three different caseinolytic proteases of molecular weights 95.62 kDa, 91.11 kDa and 83.23 kDa with pI 3.89, 5.45 and 5.43 respectively. Both aqueous and lyophilized form of IP were remarkably stable retaining complete activity at 4 °C for 3 weeks. Electrophoretic analysis of casein hydrolysate by IP at different incubation time indicated a time dependent substrate subunit specificity with hydrolysis of κ-casein commencing after 10 min followed by α and β caseins. This pattern was found similar to that by commercial vegetable coagulant, Enzeco®. Study details the effectiveness of TPP concentrated W. tinctoria proteases as a vegetable coagulant alternative in cheese making.
Collapse
|
18
|
Ben Amira A, Besbes S, Attia H, Blecker C. Milk-clotting properties of plant rennets and their enzymatic, rheological, and sensory role in cheese making: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1289959] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amal Ben Amira
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Gembloux, Belgium
- National Engineering School of Sfax, Laboratory of Food Analysis, University of Sfax, Sfax, Tunisia
| | - Souhail Besbes
- National Engineering School of Sfax, Laboratory of Food Analysis, University of Sfax, Sfax, Tunisia
| | - Hamadi Attia
- National Engineering School of Sfax, Laboratory of Food Analysis, University of Sfax, Sfax, Tunisia
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Gembloux, Belgium
| |
Collapse
|
19
|
Gagaoua M, Ziane F, Nait Rabah S, Boucherba N, Ait Kaki El-Hadef El-Okki A, Bouanane-Darenfed A, Hafid K. Three phase partitioning, a scalable method for the purification and recovery of cucumisin, a milk-clotting enzyme, from the juice of Cucumis melo var. reticulatus. Int J Biol Macromol 2017; 102:515-525. [PMID: 28428129 DOI: 10.1016/j.ijbiomac.2017.04.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/12/2017] [Accepted: 04/14/2017] [Indexed: 01/14/2023]
Abstract
Cucumisin [EC 3.4.21.25] was first purified from Cucumis melo var. reticulatus juice by three-phase partitioning (TPP). Optimum purification parameters of the TPP system were determined as 60% ammonium sulfate saturation with 1.0:1.25 ratio of crude extract: t-butanol at pH and temperature of 8.0 and 20°C, respectively. Cucumisin was purified with 4.61 purification fold and 156% activity recovery. The molecular weight of the recovered cucumisin was determined as 68.4kDa and its isoelectric point is 8.7. Optimum pH and temperature of cucumisin were pH 9.0 and 60-70°C, respectively. The protease was very stable at 20-70°C and a pH range of 2.0-12.0. Km and Vmax constants were 2.24±0.22mgmL-1 and 1048±25μ Mmin-1, respectively. The enzyme was stable against numerous metal ions and its activity was highly enhanced by Ca2+, Mg2+, and Mn+2. Cucumisin activity was 2.35-folds increased in the presence of 5mM of CaCl2. It was inactivated by Co2+, Cd2+, Zn2+ and Fe2+ and dramatically by PMSF. Cucumisin milk-clotting activity was highly stable when stored under freezing (-20°C) compared at 4°C and 25°C. Finally, TPP revealed to be a useful strategy to concentrate and purify cucumisin for its use as a milk-clotting enzyme for cheese-making.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Equipe MaQuaV, INATAA, Université Frères Mentouri Constantine, Route de Ain El-Bey, 25000 Constantine, Algeria; INATAA, Université Frères Mentouri Constantine, Route de Ain El-Bey, 25000 Constantine, Algeria.
| | - Ferhat Ziane
- INATAA, Université Frères Mentouri Constantine, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Sabrina Nait Rabah
- INATAA, Université Frères Mentouri Constantine, Route de Ain El-Bey, 25000 Constantine, Algeria
| | - Nawel Boucherba
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, Targa Ouzemmour, 06000 Bejaia, Algeria
| | | | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology, Microbiology Team, University of Sciences and Technology of Houari Boumediene, PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Kahina Hafid
- Equipe MaQuaV, INATAA, Université Frères Mentouri Constantine, Route de Ain El-Bey, 25000 Constantine, Algeria; INATAA, Université Frères Mentouri Constantine, Route de Ain El-Bey, 25000 Constantine, Algeria
| |
Collapse
|
20
|
Isolation, biochemical and genetic characterization of extracellular protease producing cattle hide dehairing bacterium – A potential alternative to chemical dehairing. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egg.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
22
|
Moreno-Hernández JM, Hernández-Mancillas XD, Navarrete ELC, Mazorra-Manzano MÁ, Osuna-Ruiz I, Rodríguez-Tirado VA, Salazar-Leyva JA. Partial Characterization of the Proteolytic Properties of an Enzymatic Extract From "Aguama" Bromelia pinguin L. Fruit Grown in Mexico. Appl Biochem Biotechnol 2016; 182:181-196. [PMID: 27830465 DOI: 10.1007/s12010-016-2319-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Plant proteases are capable of performing several functions in biological systems, and their use is attractive for biotechnological process due to their interesting catalytic properties. Bromelia pinguin (aguama) is a wild abundant natural resource in several regions of Central America and the Caribbean Islands but is underutilized. Their fruits are rich in proteases with properties that are still unknown, but they represent an attractive source of enzymes for biotechnological applications. Thus, the proteolytic activity in enzymatic crude extracts (CEs) from wild B. pinguin fruits was partially characterized. Enzymes in CEs showed high proteolytic activity at acid (pH 2.0-4.0) and neutral alkaline (pH 7.0-9.0) conditions, indicating that different types of active proteases are present. Proteolytic activity inhibition by the use of specific protease inhibitors indicated that aspartic, cysteine, and serine proteases are the main types of proteases present in CEs. Activity at pH 3.0 was stable in a broad range of temperatures (25-50 °C) and retained its activity in the presence of surfactants (SDS, Tween-80), reducing agents (DTT, 2-mercapoethanol), and organic solvents (methanol, ethanol, acetone, 2-propanol), which suggests that B. pinguin proteases are potential candidates for their application in brewing, detergent, and pharmaceutical industries.
Collapse
Affiliation(s)
- Jesús Martín Moreno-Hernández
- Programa de Investigación en Biotecnología. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Valle de Culiacán, Km. 17.5 Carretera Culiacán-Eldorado, 80000, Culiacán, SIN, Mexico
| | - Xitlalli Desideria Hernández-Mancillas
- Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3., 82199, Mazatlán, SIN, Mexico
| | - Evelia Lorena Coss Navarrete
- Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3., 82199, Mazatlán, SIN, Mexico
| | - Miguel Ángel Mazorra-Manzano
- Laboratorio de Biotecnología de Lácteos, Química y Autenticidad de Alimentos, Coordinación de Tecnología de Alimentos de Origen Animal Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a La Victoria Km. 0.6, 83000, Hermosillo, SON, Mexico
| | - Idalia Osuna-Ruiz
- Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3., 82199, Mazatlán, SIN, Mexico
| | - Víctor Alfonso Rodríguez-Tirado
- Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3., 82199, Mazatlán, SIN, Mexico
| | - Jesús Aarón Salazar-Leyva
- Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3., 82199, Mazatlán, SIN, Mexico.
| |
Collapse
|
23
|
Freitas CD, Leite HB, Oliveira JP, Amaral JL, Egito AS, Vairo-Cavalli S, Lobo MD, Monteiro-Moreira AC, Ramos MV. Insights into milk-clotting activity of latex peptidases from Calotropis procera and Cryptostegia grandiflora. Food Res Int 2016; 87:50-59. [DOI: 10.1016/j.foodres.2016.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
24
|
Nasr AIAM, Mohamed Ahmed IA, Hamid OIA. Characterization of partially purified milk-clotting enzyme from sunflower (Helianthus annuus) seeds. Food Sci Nutr 2016; 4:733-41. [PMID: 27625777 PMCID: PMC5011381 DOI: 10.1002/fsn3.338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 11/24/2022] Open
Abstract
This study was aimed to extract milk‐clotting enzyme from sunflower seeds and to determine its potentiality for manufacturing white soft cheese from cows and goats milk. The seeds were blended and extracted using two types of buffers and milk‐clotting and proteolytic activities were evaluated. The enzyme was partially purified using ammonium sulfate fractionation techniques. Results indicated that sunflower seeds extracted with 5% NaCl in 50 mmol/L acetate buffer, pH 5.0, had the highest milk‐clotting activity (MCA) and lowest coagulation time compared to that extracted with only acetate buffer (pH 5.0). Ammonium sulfate at 30–50% saturation purified the enzyme to 4.3 folds with MCA of 241.0 U/mL and final enzyme yield of 10.9%. The partially purified enzyme was characterized by SDS–PAGE that showed two bands with molecular weight of 120 and 62 kDa. When compared with other plant enzymes, the partially purified sunflower enzyme was found to have higher milk‐clotting activity and lower proteolytic activity. Also, both milk sources and enzyme types significantly affected the cheese yield and curd formation time. The cheese made from cow milk using sunflower enzyme had higher yield compared to that obtained using commercial rennet, whereas the opposite was observed when using goat milk.
Collapse
Affiliation(s)
- Assia I A M Nasr
- Milk Science and Technology Department College of Animal Production of Science and Technology Sudan University of Science and Technology Khartoum North Kuku Sudan
| | - Isam A Mohamed Ahmed
- Department of Food Science and Technology Faculty of Agriculture University of Khartoum Khartoum North Shambat 13314 Sudan
| | - Omer I A Hamid
- Milk Science and Technology Department College of Animal Production of Science and Technology Sudan University of Science and Technology Khartoum North Kuku Sudan
| |
Collapse
|
25
|
Zhang Y, Wang H, Tao L, Huang AX. Milk-clotting mechanism of Dregea sinensis Hemsl. protease. J Dairy Sci 2015; 98:8445-53. [PMID: 26506540 DOI: 10.3168/jds.2015-9851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022]
Abstract
Dregea sinensis Hemsl. is used as a milk coagulant to produce goat milk cakes in Yunnan, China. However, the composition of milk-clotting compounds and the related mechanism have not been reported. Crude protease was extracted from the stem, purified, and then separated with a Millipore ultrafiltration centrifuge tube. Cysteine protease (procerain B) was identified as the main milk-clotting protein through electrospray ionization mass spectrometry, and its molecular weight was 23.8 kDa. The protease can partially degrade α-casein (CN) and completely degrade β- and κ-CN, and κ-CN degradation resulted in milk clotting. The molecular weight and AA sequence of the peptide fractions were determined through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a peptide sequencer, respectively. The enzyme cleaved κ-CN at Ala90-Gln91 and produced deputy κ-CN and caseinomacropeptide with molecular weights of 12 and 6.9 kDa, respectively. This cleavage site differed from the majority of chymosins cleaved at Phe105-Met106.
Collapse
Affiliation(s)
- Yali Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Hongyan Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ai-xiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
26
|
Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase. Food Chem 2014; 156:305-11. [DOI: 10.1016/j.foodchem.2014.01.080] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/04/2014] [Accepted: 01/23/2014] [Indexed: 11/18/2022]
|
27
|
Characterisation of potential milk coagulants from Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2177-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Shah MA, Mir SA, Paray MA. Plant proteases as milk-clotting enzymes in cheesemaking: a review. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13594-013-0144-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Pontual EV, Carvalho BEA, Bezerra RS, Coelho LCBB, Napoleão TH, Paiva PMG. Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chem 2012; 135:1848-54. [PMID: 22953932 DOI: 10.1016/j.foodchem.2012.06.087] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/14/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022]
Abstract
This work reports the detection and characterization of caseinolytic and milk-clotting activities from Moringa oleifera flowers. Proteins extracted from flowers were precipitated with 60% ammonium sulphate. Caseinolytic activity of the precipitated protein fraction (PP) was assessed using azocasein, as well as α(s)-, β- and κ-caseins as substrates. Milk-clotting activity was analysed using skim milk. The effects of heating (30-100°C) and pH (3.0-11.0) on enzyme activities were determined. Highest caseinolytic activity on azocasein was detected after previous incubation of PP at pH 4.0 and after heating at 50°C. Milk-clotting activity, detected only in the presence of CaCl(2), was highest at incubation of PP at pH 3.0 and remained stable up to 50°C. The pre-treatment of milk at 70°C resulted in highest clotting activity. Enzyme assays in presence of protease inhibitors indicated the presence of aspartic, cysteine, serine and metallo proteases. Aspartic proteases appear to be the main enzymes involved in milk-clotting activity. PP promoted extensive cleavage of κ-casein and low level of α(s)- and β-caseins hydrolysis. The milk-clotting activity indicates the application of M. oleifera flowers in dairy industry.
Collapse
Affiliation(s)
- Emmanuel V Pontual
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
|