1
|
Vinh LB, Lee KS, Han YK, Kim YJ, Kim S, Shah AB, Byun Y, Lee KY. Allergy Inhibition Using Naturally Occurring Compounds Targeting Thymic Stromal Lymphopoietin Pathways: a Comprehensive Review. Biomol Ther (Seoul) 2025; 33:249-267. [PMID: 39933953 PMCID: PMC11893497 DOI: 10.4062/biomolther.2024.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025] Open
Abstract
Naturally occurring compounds have widely been applied to treat diverse pharmacological effects, including asthma, allergic diseases, antioxidants, inflammation, antibiotics, and cancer. Recent research has revealed the essential role of the thymic stromal lymphopoietin (TSLP) in regulating inflammatory responses at mucosal barriers and maintaining immune homeostasis. Asthma, inflammation, and chronic obstructive pulmonary disease are allergic disorders in which TSLP plays a significant role. Although TSLP's role in type 2 immune responses has undergone comprehensive investigation, its involvement in inflammatory diseases and cancer has also been found to be expanding. However, investigating how to block the TSLP pathway using natural products has been limited. This paper summarizes the roles of various medicinal plants and their chemical components that effectively inhibit the TSLP pathway. In addition, we also highlight the contributions of several plant-derived compounds to treat allergic diseases via targeting TSLP. This review intends to offer innovative concepts to scientists investigating the use of naturally produced compounds and extracts for the treatment of allergic illnesses.
Collapse
Affiliation(s)
- Le Ba Vinh
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 11355, Vietnam
| | - Kyeong Seon Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Yoo Kyong Han
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Young Jun Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Suzy Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Abdul Bari Shah
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Sun J, Dong S, Li J, Zhao H. A comprehensive review on the effects of green tea and its components on the immune function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Han NR, Ko SG, Moon PD, Park HJ. Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway. J Ginseng Res 2021; 45:610-616. [PMID: 34803431 PMCID: PMC8587510 DOI: 10.1016/j.jgr.2021.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Han NR, Ko SG, Moon PD, Park HJ. Chloroquine attenuates thymic stromal lymphopoietin production via suppressing caspase-1 signaling in mast cells. Biomed Pharmacother 2021; 141:111835. [PMID: 34146852 DOI: 10.1016/j.biopha.2021.111835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) produced by mast cells is involved in allergic inflammation pathogenesis. Chloroquine (CQ) is known to be an anti-malarial drug; however, additional protective functions of CQ have been discovered. This study aims to clarify an anti-inflammatory effect of CQ through modulating TSLP levels using an in vitro model of phorbol myristate acetate (PMA) + A23187-activated human mast cell line (HMC-1) and an in vivo model of PMA-irritated ear edema. CQ treatment reduced the production and mRNA expression levels of TSLP in activated HMC-1 cells. CQ down-regulated caspase-1 (CASP1), MAPKs, and NF-κB levels enhanced by stimulation with PMA + A23187. Moreover, ear thickness in ear edema was suppressed following CQ treatment. CQ decreased CASP1 and NF-κB levels in the ear tissue. TSLP levels in the ear tissue and serum were reduced following CQ treatment. Collectively, the above findings elucidate that CQ inhibits the pro-inflammatory mechanisms of TSLP via the down-regulation of distinct intracellular signaling cascade in mast cells. Therefore, CQ may have protective roles against TSLP-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Schmite BDFP, Bitobrovec A, Hacke ACM, Pereira RP, Weinert PL, dos Anjos VE. In vitro bioaccessibility of Al, Cu, Cd, and Pb following simulated gastro-intestinal digestion and total content of these metals in different Brazilian brands of yerba mate tea. Food Chem 2019; 281:285-293. [DOI: 10.1016/j.foodchem.2018.12.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/14/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
|
6
|
Effects of Linalyl Acetate on Thymic Stromal Lymphopoietin Production in Mast Cells. Molecules 2018; 23:molecules23071711. [PMID: 30011850 PMCID: PMC6100028 DOI: 10.3390/molecules23071711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an important factor responsible for the pathogenesis of allergic diseases, such as atopic dermatitis and asthma. Because linalyl acetate (LA) possesses a wide range of pharmacological properties, being antispasmodic, anti-inflammatory, and anti-hyperpigmentation, we hypothesized that LA could inhibit TSLP. Therefore, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, caspase-1 assay, Western blot analysis, fluorescent analyses of the intracellular calcium levels, and the phorbol myristate acetate (PMA)-induced edema model were used to investigate how LA inhibits the production of TSLP in HMC-1 cells. LA reduced the production and mRNA expression of TSLP in HMC-1 cells. LA also inhibited the activation of nuclear factor-κB and degradation of IκBα. PMA plus A23187 stimulation up-regulated caspase-1 activity in HMC-1 cells; however, this up-regulated caspase-1 activity was down-regulated by LA. Finally, LA decreased intracellular calcium levels in HMC-1 cells as well as PMA-induced ear swelling responses in mice. Taken together, these results suggest that LA would be beneficial to treatment of atopic and inflammatory diseases by reducing TSLP.
Collapse
|
7
|
Rosa SIG, Rios-Santos F, Balogun SO, de Almeida DAT, Damazo AS, da Cruz TCD, Pavan E, Barbosa RDS, Alvim TDC, Soares IM, Ascêncio SD, Macho A, Martins DTDO. Hydroethanolic extract from Echinodorus scaber Rataj leaves inhibits inflammation in ovalbumin-induced allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:191-199. [PMID: 28342859 DOI: 10.1016/j.jep.2017.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Echinodorus scaber, Alismataceae, is popularly known in Brazil as "chapéu-de-couro". The plant leaves are used by the population as decoction, infusion, or maceration in bottled spirits, to treat inflammatory respiratory diseases. AIM OF THE STUDY To investigate the anti-inflammatory mechanism of the hydroethanolic extract of leaves of Echinodorus scaber (HEEs) in allergic asthma. A phytochemical analysis of the extract was performed as well. MATERIALS AND METHODS The leaves of Echinodorus scaber were prepared by maceration in 75% ethanol. Preliminary phytochemical analysis was carried out using basic classical methods, and the secondary metabolites detected in HEEs were analyzed and confirmed by high-performance liquid chromatography (HPLC). The in vivo anti-inflammatory activity of HEEs was evaluated in Swiss male albino mice sensitized and challenged by OVA. The HEEs (1, 5 and 30mg/kg, p.o.) was administered to mice twice a day, 1h before the challenge, from days 19 through 24. The mechanism of action of HEEs was studied by evaluating the levels of TH2 cytokines (IL-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) and IgE production in blood plasma. Histopathological changes triggered by OVA-sensitization/challenge in the lung tissue were also investigated. RESULTS HEEs reduced total leukocyte, eosinophil, neutrophil, and mononuclear cell counts at all doses tested, with maximum effect at 30mg/kg (73.9%, 75.9%, 75.5%, and 65.2% reduction, p<0.001, respectively). Increases in TH2 cytokine secretion (IL-4, IL-5 and IL-13) and in IgE levels were also attenuated by HEEs. Preliminary phytochemical screening seems to indicated the presence of phenolic compounds, flavonoids and alkaloids. HPLC analyses evidenced the presence of phenolic compounds, such as gallic acid, rutin and vitexin. CONCLUSION Our findings provided pharmacological preclinical evidence for the popular use of the leaves of Echinodorus scaber in allergic inflammation. Its anti-inflammatory effect was dependent on the decrease in migratory inflammatory cells, and both TH2 cytokines and IgE levels. It is suggested that vitexin, gallic acid and rutin, known anti-inflammatory compounds, may participate in the anti-asthamtic effect of the HEEs, by acting jointly along with other components present in the extract.
Collapse
Affiliation(s)
- Suellen Iara Guirra Rosa
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Fabrício Rios-Santos
- Physiology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Sikiru Olaitan Balogun
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil; Pharmacy Graduation Curse, Faculty of the Northwest of Mato Grosso, Juína Association of Higher Education, AJES, 78320-000 Juína, MT, Brazil
| | - Danielle Ayr Tavares de Almeida
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Amilcar Sabino Damazo
- Histology and Cell Biology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Thais Campos Dias da Cruz
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Eduarda Pavan
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Robson Dos Santos Barbosa
- Laboratory of Natural Research Products, Faculty of Medicine, Federal University of Tocantins, UFT, 77020-210 Palmas, TO, Brazil
| | - Tarso da Costa Alvim
- Post-Graduate Studies in Agroenergy, Federal University of Tocantins, UFT, 77020-210 Palmas, TO, Brazil
| | - Ilsamar Mendes Soares
- Laboratory of Natural Research Products, Faculty of Medicine, Federal University of Tocantins, UFT, 77020-210 Palmas, TO, Brazil
| | - Sérgio Donizeti Ascêncio
- Laboratory of Natural Research Products, Faculty of Medicine, Federal University of Tocantins, UFT, 77020-210 Palmas, TO, Brazil
| | - Antonio Macho
- Physiology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil.
| |
Collapse
|
8
|
A novel compound 2-(4-{2-[(phenylthio)acetyl]carbonohydrazonoyl}phenoxy)acetamide downregulates TSLP through blocking of caspase-1/NF-κB pathways. Int Immunopharmacol 2016; 38:420-5. [DOI: 10.1016/j.intimp.2016.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 01/29/2023]
|
9
|
Moon PD, Kim MH, Oh HA, Nam SY, Han NR, Jeong HJ, Kim HM. Cysteine induces longitudinal bone growth in mice by upregulating IGF-I. Int J Mol Med 2015; 36:571-6. [PMID: 26101100 DOI: 10.3892/ijmm.2015.2257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Cysteine (Cys) is known to exert various effects, such as antioxidant, antipancreatitic and antidiabetic effects. However, the effects of Cys on longitudinal bone growth have not been elucidate to date. Thus, the aim of the present study was to evaluate the effects of Cys on bone growth. Growth-plate thickness and bone parameters, such as bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), connectivity density (Conn.D) and total porosity were analyzed by means of micro-computed tomography (μCT). The levels of serum insulin-like growth factor-I (IGF-I) were measured by enzyme-linked immunosorbent assay (ELISA). Hepatic IGF-I mRNA expression was analyzed by quantitative polymerase chain reaction (qPCR). The phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) was investigated by western blot analysis. Our results revealed that Cys increased IGF-I mRNA expression in HepG2 cells. The thickness of the growth plates was increased following treatment with Cys. Moreover, BV/TV, Tb.Th, TbN, Conn.D and total porosity were improved following treatment with Cys. Hepatic IGF-I mRNA expression and serum IGF-I levels were increased by Cys. The levels of phosphorylated JAK2 and STAT5 were elevated by Cys. The findings of our study indicate that Cys increases the thickness of growth plates through the upregulation of IGF-I, which results from the phosphorylation of JAK2-STAT5. Thus, our data suggest that Cys may have potential for use as a growth-promoting agent.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Min-Ho Kim
- Department of Computer Aided Mechanical Engineering, Sohae College, Gunsan, Jeonbuk, 573-717, Republic of Korea
| | - Hyun-A Oh
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 336‑795, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| |
Collapse
|
10
|
Moon PD, Kim MH, Lim HS, Oh HA, Nam SY, Han NR, Kim MJ, Jeong HJ, Kim HM. Taurine, a major amino acid of oyster, enhances linear bone growth in a mouse model of protein malnutrition. Biofactors 2015; 41:190-7. [PMID: 25963419 DOI: 10.1002/biof.1213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/19/2015] [Indexed: 01/04/2023]
Abstract
Oysters (Oys) contain various beneficial components, such as, antioxidants and amino acids. However, the effects of Oys or taurine (Tau), a major amino acid in Oys on bone growth have not been determined. In the present study, we evaluated the effects of Oys or Tau on linear bone growth in a mouse model of protein malnutrition. To make the protein malnutrition in a mouse, we used a low protein diet. Growth plate thickness was increased by Oys or Tau. Bone volume/tissue volume, trabecular thickness, trabecular number, connection density, and total porosity were also improved by Oys or Tau. Oys or Tau increased insulin-like growth factor-1 (IGF-1) levels in serum, liver, and tibia-growth plate. Phosphorylations of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were increased by Oys and by Tau. These findings show that Oys or Tau may increase growth plate thickness by elevating IGF-1 levels and by promoting the phosphorylations of JAK2-STAT5, and suggest that Oys or Tau are growth-promoting substances of potential use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Min-Ho Kim
- Department of Computer Aided Mechanical Engineering, Sohae College, Gunsan, Jeonbuk, 573-717, Republic of Korea
| | - Hun-Sun Lim
- Du Wha Com., Deokjeong-ri, Samseong-myeon, Eumseong-gun, Chungbuk, 369-833, Republic of Korea
| | - Hyun-A Oh
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Myong-Jo Kim
- Oriental Bio-herb Research Institute, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Hyun-Ja Jeong
- Inflammatory Disease Research Center and Biochip Research Center, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan, Chungnam, 336-795, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
11
|
da Silveira TFF, Meinhart AD, Ballus CA, Godoy HT. The effect of the duration of infusion, temperature, and water volume on the rutin content in the preparation of mate tea beverages: An optimization study. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|