1
|
Chen C, Li G, Dai L, Zhao H, Li N, Mi W, Yin S, Wang S, Zhang J. Simultaneous separation of glycyrrhizic acid, baicalein and wogonin from Radix Glycyrrhizae and Radix Scutellariae using foam fractionation and in vitro activity evaluation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5200-5209. [PMID: 35289954 DOI: 10.1002/jsfa.11872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/08/2021] [Accepted: 03/15/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND In this study, the optimal conditions for the extraction and purification of glycyrrhizic acid from Radix Glycyrrhizae (RG) and baicalein and wogonin from Radix Scutellariae (RS) by foam fractionation were studied on the basis of central composite design (CCD) and response surface methodology. RESULTS The results showed that herbal proportion (RG:RS), gas flow and ethanol concentration were the main factors guiding the foam fractionation of RG and RS. The optimum technological parameters were obtained as follows: herbal proportion (RG:RS), 1.86:1.14; gas flow, 109 mL min-1 ; and ethanol concentration, 53%. Under the optimal operating conditions, the maximal extraction yields of baicalein, glycyrrhizic acid and wogonin were 56.67, 13.25 and 9.51 mg g-1 , respectively, which were 2.32-, 1.22- and 1.84-fold higher than those of ultrasonic extraction and 17.28-, 1.15- and 9.91-fold higher than those of ultrasonic extraction without hydrolysis, respectively. Investigations on the antioxidant activity showed that the foam-fractionated extract exhibited better free radical scavenging activity (IC50 13.80 μg mL-1 ) than that of the ultrasonic extract (IC50 223.00 μg mL-1 ). Antibacterial activity showed that the minimum inhibitory concentrations of the foam fractionated extract against Staphylococcus aureus, Candida albicans, Group A Streptococcus and Pseudomonas aeruginosa were 1.38, 1.38, 0.69 and 5.50 mg mL-1 , respectively. CONCLUSION The results indicate that the foam fractionated extract exhibited better extraction yields and free radical scavenging activity than did the ultrasonic extract. Therefore, this fast and eco-friendly method was established and could be a basis for the extraction and separation of other active constituents from herbal medicines. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caiyun Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Gaotian Li
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, China
| | - Long Dai
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, China
| | - Huijuan Zhao
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Ning Li
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Wei Mi
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shuying Yin
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shaoping Wang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, China
| | - Jiayu Zhang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Yun C, Wang S, Gao Y, Zhao Z, Miao N, Shi Y, Ri I, Wang W, Wang H. Optimization of ultrasound-assisted enzymatic pretreatment for enhanced extraction of baicalein and wogonin from Scutellaria baicalensis roots. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123077. [PMID: 34894479 DOI: 10.1016/j.jchromb.2021.123077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 01/17/2023]
Abstract
It is of great theoretical interest and industrial significance to improve the extraction efficiency of baicalein and wogonin from Scutellaria baicalensis roots because of their high pharmacological activities. The present study was aimed to establish the optimized ultrasound-assisted enzymatic pretreatment (UAEP) process by which ultrasound irradiation and the exogenous enzyme were simultaneously applied to efficiently transform baicalin and wogonoside into baicalein and wogonin, enhancing their extraction efficiency. Single-factor experiment and Box-Behnken design were used to optimize the main UAEP conditions to maximize the total extraction yield of baicalein and wogonin. The optimized UAEP conditions were cellulase concentration of 1.1%, pH of 5.5, UAEP temperature of 56.5 °C, UAEP time of 39.4 min, and ultrasonic power of 200 W with the total extraction yield of 82.51 ± 0.85 mg/g DW. The comparison of the established technique with the reference method based on the enzymatic pretreatment revealed that the productive efficiency was significantly improved with the transformation rates nearly doubled. These results suggest that the optimized UAEP process has the potential to be applied for the green, simple, and efficient extraction of baicalein and wogonin in the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Cholil Yun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Forest Science, Kim Il Sung University, Pyongyang 999093, Democratic People's Republic of Korea
| | - Shengfang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yuan Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhuowen Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Na Miao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yutong Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ilbong Ri
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Life Science, Kim Il Sung University, Pyongyang 999093, Democratic People's Republic of Korea
| | - Wenjie Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Huimei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Wang YS, Cho JG, Hwang ES, Yang JE, Gao W, Fang MZ, Zheng SD, Yi TH. Enhancement of Protective Effects of Radix Scutellariae on UVB-induced Photo Damage in Human HaCaT Keratinocytes. Appl Biochem Biotechnol 2017; 184:1073-1093. [PMID: 28948464 DOI: 10.1007/s12010-017-2611-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023]
Abstract
Radix Scutellariae (RS) has long been used in the treatment of inflammatory and allergic diseases. Its main flavonoids, baicalin (BG) and wogonoside (WG), can be hydrolyzed into their corresponding aglycones, baicalein (B) and wogonin (W). In this study, we developed a safe and effective method of transforming these glycosides using Peclyve PR. The transformation rate of BG and WG reached 98.5 and 98.1%, respectively, with 10% enzyme at 40 °C for 60 h. Furthermore, we compared the anti-photoaging activity of RS before and after enzyme treatment, as well as their respective main components, in UVB-irradiated HaCaT cells. Results found that enzyme-treated RS (ERS) appeared to be much better at preventing UVB-induced photoaging than RS. ERS significantly inhibited the upregulation of matrix metalloproteinase-1 and IL-6 caused by UVB radiation by inactivating the MAPK/AP-1 and NF-κB/IκB-α signaling pathways. ERS treatment also recovered UVB-induced reduction of procollagen type I by activating the TGF-β/Smad pathway. In addition, ERS exhibited an excellent antioxidant activity, which could increase the expression of cytoprotective antioxidants such as HO-1 and NQ-O1, by facilitating Nrf2 nuclear transfer. These findings demonstrated that the photoprotective effects of RS were significantly improved by enzyme-modified biotransformation.
Collapse
Affiliation(s)
- Yu-Shuai Wang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jin-Gyeong Cho
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Eun-Son Hwang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jung-Eun Yang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Wei Gao
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Min-Zhe Fang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sheng-Dao Zheng
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
4
|
A simple and rapid infrared-assisted self enzymolysis extraction method for total flavonoid aglycones extraction from Scutellariae Radix and mechanism exploration. Anal Bioanal Chem 2017; 409:5593-5602. [PMID: 28730309 DOI: 10.1007/s00216-017-0497-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/16/2017] [Accepted: 06/26/2017] [Indexed: 01/30/2023]
Abstract
A new, simple, and fast infrared-assisted self enzymolysis extraction (IRASEE) approach for the extraction of total flavonoid aglycones (TFA) mainly including baicalein, wogonin, and oroxylin A from Scutellariae Radix is presented to enhance extraction yield. Extraction enzymolysis temperature, enzymolysis liquid-to-solid ratio, enzymolysis pH, enzymolysis time and infrared power, the factors affecting IRASEE procedure, were investigated in a newly designed, temperature-controlled infrared-assisted extraction (TC-IRAE) system to acquire the optimum analysis conditions. The results illustrated that IRASEE possessed great advantages in terms of efficiency and time compared with other conventional extraction techniques. Furthermore, the mechanism of IRASEE was preliminarily explored by observing the microscopic change of the samples surface structures, studying the main chemical compositions change of the samples before and after extraction and investigating the kinetics and thermodynamics at three temperature levels during the IRASEE process. These findings revealed that IRASEE can destroy the surface microstructures to accelerate the mass transfer and reduce the activation energy to intensify the chemical process. This integrative study presents a simple, rapid, efficient, and environmental IRASEE method for TFA extraction which has promising prospects for other similar herbal medicines. Graphical Abstract ᅟ.
Collapse
|
5
|
Tu B, Li RR, Liu ZJ, Chen ZF, Ouyang Y, Hu YJ. Structure-activity relationship study between baicalein and wogonin by spectrometry, molecular docking and microcalorimetry. Food Chem 2016; 208:192-8. [PMID: 27132840 DOI: 10.1016/j.foodchem.2016.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/06/2016] [Accepted: 04/04/2016] [Indexed: 11/25/2022]
Abstract
Flavones (e.g. baicalein and wogonin) extensively used worldwide in food preparation and traditional medicine. In this study, a systematically comparative study of their structure-activity relationships (SAR) on their interaction with BSA, antioxidant activity and antibacterial activity has been carried out by spectrometry, molecular docking and microcalorimetry. Our results show that the skeleton structure of flavones, the number of hydroxyl groups, the type of functional group, conjugated system and the steric hindrance may be responsible for their different biological activity. These findings not only would lay a scientific foundation for discovering and designing flavones-based food and drug, may also help us to understanding the structure-activity relationship between flavones at the molecular level.
Collapse
Affiliation(s)
- Bao Tu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Rong-Rong Li
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Zhi-Juan Liu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Zhi-Feng Chen
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Yu Ouyang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | - Yan-Jun Hu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
6
|
Lee KJ, Jung PM, Oh YC, Song NY, Kim T, Ma JY. Extraction and Bioactivity Analysis of Major Flavones Compounds from Scutellaria baicalensis Using In Vitro Assay and Online Screening HPLC-ABTS System. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:563702. [PMID: 25258697 PMCID: PMC4166446 DOI: 10.1155/2014/563702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
The extraction efficiency of a number of solvent compositions for the improvement of bioactive compounds yield from S. baicalensis has been investigated. Also, free radical scavengers in the glycoside baicalin (BG), wogonoside (WG), aglycon baicalein (B), and wogonin (W) compounds of S. baicalensis were screened, identified, and quantified using coupled offline ABTS and online screening HPLC-ABTS assay. Increasing ethanol content fractions resulted in decreased extract yield of bioactive compounds. In this case, the best yield of 37.01 mg/g in BG, WG, B, and W compounds was obtained by a dipping method with an extraction time of 4 h. In addition, the yield (43.05%) and IC50 (34.04 μg/mL) determined through ABTS assay of the 60% aqueous ethanol extract were the most satisfactory of all solvent solutions tested. This result shows that an online screening HPLC-ABTS assay can be a powerful technique for the rapid characterization of bioactivity compounds in plant extracts. Moreover, their anti-inflammatory activities were evaluated via analyzed inhibitory effect on NO and inflammatory cytokine production. Furthermore, WG and W exhibited the strong inhibitory effects on inflammatory mediator production including NO, IL-6, and IL-1β in LPS-stimulated RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Kwang Jin Lee
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Pil Mun Jung
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - You-Chang Oh
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Na-Young Song
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Taesoo Kim
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Jin Yeul Ma
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| |
Collapse
|
7
|
Antimicrobial activity of electrospun polyurethane nanofibers containing composite materials. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-013-0257-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|