1
|
Najafi Z, Han S, Sumnu G, Kahyaoglu LN. Colorimetric core/shell ZIF-8/PEO/PDA nanofibers for detection of fish spoilage. Food Chem 2025; 466:142195. [PMID: 39603000 DOI: 10.1016/j.foodchem.2024.142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Here, colorimetric nanofibers (NFs) based on polydiacetylene (PDA), zeolitic imidazolate framework-8 (ZIF-8), and poly(ethylene) oxide (PEO) were developed. First, the successful synthesis of ZIF-8 was illustrated with structural and morphological analysis. Next, shell/core PDA/PEO/ZIF-8 NFs, namely PPZ0, PPZ5, PPZ15, and PPZ25, were fabricated by coaxial electrospinning at various ZIF-8 concentrations in the core. PPZ5 NFs exhibited a 63 % increase in tensile strength while PPZ25 NFs showed the highest thermal resistance. PPZ15 NFs with the best physicochemical and colorimetric properties were selected to evaluate food spoilage. The change in color difference values of PPZ15 NFs was correlated well with total viable count (TVC) and total volatile basic nitrogenous (TVB-N) in fish samples during chilled storage, reaching TVC to 6.69 log CFU/g, and TVB-N to 33.13 mg N/100 g on day 6. Ultimately, the PPZ15 NFs were successfully utilized to provide a real-time, quantitative assessment of fish freshness.
Collapse
Affiliation(s)
- Zahra Najafi
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye
| | - Sangil Han
- Department of Chemical Engineering, Changwon National University, Changwon 51140, South Korea
| | - Gülüm Sumnu
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye
| | - Leyla Nesrin Kahyaoglu
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye.
| |
Collapse
|
2
|
Akhmadeev BS, Retyunskaya OO, Podyachev SN, Katsyuba SA, Gubaidullin AT, Sudakova SN, Syakaev VV, Babaev VM, Sinyashin OG, Mustafina AR. Supramolecular Optimization of Sensory Function of a Hemicurcuminoid through Its Incorporation into Phospholipid and Polymeric Polydiacetylenic Vesicles: Experimental and Computational Insight. Polymers (Basel) 2023; 15:polym15030714. [PMID: 36772015 PMCID: PMC9920781 DOI: 10.3390/polym15030714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
This work presents the synthesis of a new representative of hemicurcuminoids with a nonyloxy substituent (HCur) as a fluorescent amphiphilic structural element of vesicular aggregates based on phosphatidylcholine (PC), phosphatidylserine (PS), and 10,12-pentacosadiynoic acid (PCDA). Both X-ray diffraction analysis of the single crystal and 1H NMR spectra of HCur in organic solvents indicate the predominance of the enol-tautomer of HCur. DFT calculations show the predominance of the enol tautomer HCur in supramolecular assemblies with PC, PS, and PCDA molecules. The results of the molecular modeling show that HCur molecules are surrounded by PC and PS with a rather weak exposure to water molecules, while an exposure of HCur molecules to water is enhanced under its supramolecular assembly with PCDA molecules. This is in good agreement with the higher loading of HCur into PC(PS) vesicles compared to PCDA vesicles converted into polydiacetylene (PDA) ones by photopolymerization. HCur molecules incorporated into HCur-PDA vesicles exhibit greater planarity distortion and hydration effect in comparison with HCur-PC(PS) ones. HCur-PDA is presented as a dual fluorescence-chromatic nanosensor responsive to a change in pH within 7.5-9.5, heavy metal ions and polylysine, and the concentration-dependent fluorescent response is more sensitive than the chromatic one. Thus, the fluorescent response of HCur-PDA allows for the distinguishing between Cd2+ and Pb2+ ions in the concentration range 0-0.01 mM, while the chromatic response allows for the selective sensing of Pb2+ over Cd2+ ions at their concentrations above 0.03 mM.
Collapse
Affiliation(s)
- Bulat S. Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
- Correspondence:
| | - Olga O. Retyunskaya
- Department of Organic and Medicinal Chemistry, Kazan (Volga region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia
| | - Sergey N. Podyachev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Sergey A. Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Svetlana N. Sudakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Victor V. Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Asiya R. Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| |
Collapse
|
3
|
Thermal Denaturation of Milk Whey Proteins: A Comprehensive Review on Rapid Quantification Methods Being Studied, Developed and Implemented. DAIRY 2022. [DOI: 10.3390/dairy3030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heat treatment of milk signifies a certain degree of protein denaturation, which modifies the functional properties of dairy products. Traditional methods for detecting and quantifying the denaturation of whey proteins are slow, complex and require sample preparation and qualified staff. The world’s current trend is to develop rapid, real-time analytical methods that do not destroy the sample and can be applied on/in-line during processing. This review presents the rapid methods that are being studied, developed and/or applied to determine and quantify the thermal denaturation of whey proteins, including spectroscopic, electrochemical and miniaturized methods. The selected methods save a significant amount of time and money compared to the traditional ones. In addition, the review emphasizes the methods being applied directly to milk and/or that have potential for on/in/at-line application. There are interesting options to quantify thermal denaturation of whey proteins such as biosensors, nanosensors and microchips, which have fast responses and could be automated. In addition, electrochemical sensors are simple to use and portable, while spectroscopy alternatives are suitable for on/in/at-line process.
Collapse
|
4
|
Siddiqui J, Taheri M, Alam AU, Deen MJ. Nanomaterials in Smart Packaging Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101171. [PMID: 34514693 DOI: 10.1002/smll.202101171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Indexed: 05/22/2023]
Abstract
Food wastage is a critical and world-wide issue resulting from an excess of food supply, poor food storage, poor marketing, and unstable markets. Since food quality depends on consumer standards, it becomes necessary to monitor the quality to ensure it meets those standards. Embedding sensors with active nanomaterials in food packaging enables customers to monitor the quality of their food in real-time. Though there are many different sensors that can monitor food quality and safety, pH sensors and time-temperature indicators (TTIs) are the most critical metrics in indicating quality. This review showcases some of the recent progress, their importance, preconditions, and the various future needs of pH sensors and TTIs in food packaging for smart sensors in food packaging applications. In discussing these topics, this review includes the materials used to make these sensors, which vary from polymers, metals, metal-oxides, carbon-based materials; and their modes of fabrication, ranging from thin or thick film deposition methods, solution-based chemistry, and electrodeposition. By discussing the use of these materials, novel fabrication process, and problems for the two sensors, this review offers solutions to a brighter future for the use of nanomaterials for pH indicator and TTIs in food packaging applications.
Collapse
Affiliation(s)
- Junaid Siddiqui
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Mahtab Taheri
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Arif Ul Alam
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - M Jamal Deen
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
5
|
Polydiacetylene vesicles acting as colorimetric sensor for the detection of plantaricin LD1. Anal Biochem 2021; 631:114368. [PMID: 34499898 DOI: 10.1016/j.ab.2021.114368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/14/2023]
Abstract
The interaction of antimicrobial peptides with membrane lipids plays a major role in numerous physiological processes. In this study, polydiacetylene (PDA) vesicles were synthesized using 10, 12-tricosadiynoic acid (TRCDA) and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). These vesicles were applied as artificial membrane biosensor for the detection of plantaricin LD1 purified from Lactobacillus plantarum LD1. Plantaricin LD1 (200 μg/mL) was able to interact with PDA vesicles by changing the color from blue to red with colorimetric response 30.26 ± 0.59. Nisin (200 μg/mL), used as control, also changed the color of the vesicles with CR% 50.56 ± 0.98 validating the assay. The vesicles treated with nisin and plantaricin LD1 showed increased infrared absorbance at 1411.46 and 1000-1150 cm-1 indicated the interaction of bacteriocins with phospholipids and fatty acids, respectively suggesting membrane-acting nature of these bacteriocins. Further, microscopic observation of bacteriocin-treated vesicles showed several damages indicating the interaction of bacteriocins. These findings suggest that the PDA vesicles may be used as bio-mimetic sensor for the detection of bacteriocins produced by several probiotics in food and therapeutic applications.
Collapse
|
6
|
Synthesis of color-responsive polydiacetylene assemblies and polydiacetylene/zinc(II) ion/zinc oxide nanocomposites in water, toluene and mixed solvents: Toward large-scale production. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Chanakul A, Saymung R, Seetha S, Traiphol R, Traiphol N. Solution-mixing method for large-scale production of reversible thermochromic and acid/base-colorimetric sensors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Pankaew A, Traiphol N, Traiphol R. Tuning the sensitivity of polydiacetylene-based colorimetric sensors to UV light and cationic surfactant by co-assembling with various polymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Chagas FO, Hespanhol MC, da Silva LHM, Patrício PR, Maldaner AO, Soares TS, Castro ASB, Marinho PA. An optical sensor for the detection and quantification of lidocaine in cocaine samples. Analyst 2020; 145:6562-6571. [PMID: 32780050 DOI: 10.1039/d0an01246g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An optical sensor (OS) was synthesized by mixing 10,12-pentacosadiinoic acid (PDA) with a triblock copolymer for use in the detection/quantification of lidocaine (LD) in seized cocaine hydrochloride (seized CH) samples. In the presence of LD, the OS presented a chromatic transition from blue to red, while no chromatic transition was observed for other typical cocaine adulterants or cocaine hydrochloride. Isothermal titration calorimetry analysis revealed specific interactions between the PDA molecules of the OS and the LD molecules, with these interactions being enthalpically favorable (-1.20 to -36.7 kJ mol-1). Therefore, the OS color change only occurred when LD was present in the sample, making the OS selective for LD. Consequently, LD was successfully detected in seized CH samples, irrespective of the type of adulteration. The OS was used for the quantification of LD in seized CH samples containing different adulterants, providing a linear range of 0.0959 to 0.225% (w/w), a precision of 7.2%, an accuracy ranging from -10 to 10%, and limits of detection and quantification of 0.0110% (w/w) and 0.0334% (w/w), respectively.
Collapse
Affiliation(s)
- Francielle O Chagas
- Grupo de Análises e Educação para a Sustentabilidade (GAES), Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas (INCTAA), Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zeng H, Stewart-Yates L, Casey LM, Bampos N, Roberts DA. Covalent Post-Assembly Modification: A Synthetic Multipurpose Tool in Supramolecular Chemistry. Chempluschem 2020; 85:1249-1269. [PMID: 32529789 DOI: 10.1002/cplu.202000279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Indexed: 11/10/2022]
Abstract
The use of covalent post-assembly modification (PAM) in supramolecular chemistry has grown significantly in recent years, to the point where PAM is now a versatile synthesis tool for tuning, modulating, and expanding the functionality of self-assembled complexes and materials. PAM underpins supramolecular template-synthesis strategies, enables modular derivatization of supramolecular assemblies, permits the covalent 'locking' of unstable structures, and can trigger controlled structural transformations between different assembled morphologies. This Review discusses key examples of PAM spanning a range of material classes, including discrete supramolecular complexes, self-assembled soft nanostructures and hierarchically ordered polymeric and framework materials. As such, we hope to highlight how PAM has continued to evolve as a creative and functional addition to the synthetic chemist's toolbox for constructing bespoke self-assembled complexes and materials.
Collapse
Affiliation(s)
- Haoxiang Zeng
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luke Stewart-Yates
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Louis M Casey
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Bampos
- Department of Chemistry, The University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Derrick A Roberts
- School of Chemistry and Key Center for Polymers and Colloids, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
A polydiacetylene-based colorimetric sensor as an active use-by date indicator for milk. J Colloid Interface Sci 2020; 572:31-38. [DOI: 10.1016/j.jcis.2020.03.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 01/12/2023]
|
12
|
Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores. SENSORS 2020; 20:s20113124. [PMID: 32492781 PMCID: PMC7308844 DOI: 10.3390/s20113124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023]
Abstract
A colorimetric polydiacetylene (PDA) paper strip sensor that can specifically recognize Bacillus thuringiensis (BT) HD-73 spores is described in this work. The target-specific aptamer was combined with PDA, and the aptamer-conjugated PDA vesicles were then coated on polyvinylidene fluoride (PVDF) paper strips by a simple solvent evaporation method. The PDA-aptamer paper strips can be used to detect the target without any pre-treatment. Using the paper strip, the presence of BT spores is directly observable by the naked eye based on the unique blue-to-red color transition of the PDA. Quantitative studies using the paper strip were also carried out by analyzing the color transitions of the PDA. The specificity of this PDA sensor was verified with a high concentration of Escherichia coli, and no discernable change was observed. The observable color change in the paper strip occurs in less than 1 h, and the limit of detection is 3 × 107 CFU/mL, much below the level harmful to humans. The PDA-based paper sensor, developed in this work, does not require a separate power or detection device, making the sensor strip highly transportable and suitable for spore analysis anytime and anywhere. Moreover, this paper sensor platform is easily fabricated, can be adapted to other targets, is highly portable, and is highly specific for the detection of BT spores.
Collapse
|
13
|
Tb(III) complexes with nonyl-substituted calix[4]arenes as building blocks of hydrophilic luminescent mixed polydiacetylene-based aggregates. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Cho E, Jung S. Biomolecule-Functionalized Smart Polydiacetylene for Biomedical and Environmental Sensing. Molecules 2018; 23:E107. [PMID: 29300355 PMCID: PMC6017116 DOI: 10.3390/molecules23010107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/02/2023] Open
Abstract
Polydiacetylene (PDA) has attracted interest for use as a sensing platform in biomedical, environmental, and chemical engineering applications owing to its capacity for colorimetric and fluorescent transition in response to external stimuli. Many researchers have attempted to develop a tailor-made PDA sensor via conjugation of chemical or biological substances to PDA. Here, we review smart bio-conjugates of PDA with various biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In addition, materialization and signal amplification strategies to improve handling and sensitivity are described.
Collapse
Affiliation(s)
- Eunae Cho
- Institute for Ubiquitous Information Technology and Applications (UBITA) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MBRC) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
15
|
Zhang Y, Northcutt J, Hanks T, Miller I, Pennington B, Jelinek R, Han I, Dawson P. Polydiacetylene sensor interaction with food sanitizers and surfactants. Food Chem 2017; 221:515-520. [DOI: 10.1016/j.foodchem.2016.09.168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/27/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
16
|
Phospholipid/Polydiacetylene Vesicle-Based Colorimetric Assay for High-Throughput Screening of Bacteriocins and Halocins. Appl Biochem Biotechnol 2016; 182:142-154. [PMID: 27844338 DOI: 10.1007/s12010-016-2316-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022]
Abstract
The colorimetric assay is phospholipid/polydiacetylene vesicle-based assay used for the detection of membrane-acting peptides. Bacteriocins and halocins are antimicrobial peptides known to kill target cells by membrane disruption. Therefore, the assay was applied for high-throughput (HTP) screening of bacteriocins and halocins produced by lactic acid bacteria and haloarchaea, respectively. The assay consisted of vesicles which were synthesized using four different phospholipids: dipalmitoylphosphatydilcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphoethanolamine (DMPE) and dimyristoylphosphatidylglycerol (DMPG) in combination with diacetylene monomer 10,12-tricosadiy noic acid (TRCDA). These vesicles demonstrated blue colour at 640 nm and turned pink/red after interaction with nisin. DMPE/TRCDA vesicles showed pink colour with the highest colorimetric response (CR %) after treatment with nisin and, therefore, selected for the screening of bacteriocins and halocins. The colour of the vesicles was changed within 5 min in the presence of 5 μM nisin suggesting the sensitivity of assay. The assay was applied on 54 strains of lactic acid bacteria (LAB) and 53 haloarchaea for screening of bacteriocins and halocins, respectively. Out of these strains, three strains of LAB and five strains of haloarchaea were found to be bacteriocin and halocin non-producer, respectively. The other strains demonstrated the presence of bacteriocins and halocins. The colorimetric assay was found to be rapid, specific and reliable for HTP screening of antimicrobial peptides such as bacteriocins and halocins from producer strains isolated from various natural resources.
Collapse
|
17
|
Song S, Ha K, Guk K, Hwang SG, Choi JM, Kang T, Bae P, Jung J, Lim EK. Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Adv 2016. [DOI: 10.1039/c6ra06689e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a peptide-functionalized polydiacetylene nanosensor for pH1N1 virus detection with the naked eye.
Collapse
Affiliation(s)
- Sinae Song
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Kab Ha
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Kyeonghye Guk
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Seul-Gee Hwang
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Jong Min Choi
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Taejoon Kang
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Pankee Bae
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Juyeon Jung
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Eun-Kyung Lim
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| |
Collapse
|
18
|
Niu R, Meng XL, Yang DD, Chang Y, Zha F. Preparation of Reversible Thermochromism Supramolecules of 4-Aminophenol-Modified Polydiacetylene. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1762-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Traiphol N, Faisadcha K, Potai R, Traiphol R. Fine tuning the color-transition temperature of thermoreversible polydiacetylene/zinc oxide nanocomposites: The effect of photopolymerization time. J Colloid Interface Sci 2015; 439:105-11. [DOI: 10.1016/j.jcis.2014.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 01/09/2023]
|
20
|
Wei M, Liu J, Xia Y, Feng F, Liu W, Zheng F. A polydiacetylene-based fluorescence assay for the measurement of lipid membrane affinity. RSC Adv 2015. [DOI: 10.1039/c5ra13445e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polydiacetylene (PDA) is a promising membrane-screening tool because lipid constituents can be incorporated into the PDA framework to form lipid/PDA vesicles used as lipid bilayers.
Collapse
Affiliation(s)
- Menglin Wei
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jiajia Liu
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yuanyuan Xia
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Feng Zheng
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| |
Collapse
|
21
|
Chanakul A, Traiphol N, Faisadcha K, Traiphol R. Dual colorimetric response of polydiacetylene/Zinc oxide nanocomposites to low and high pH. J Colloid Interface Sci 2014; 418:43-51. [DOI: 10.1016/j.jcis.2013.11.083] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 12/20/2022]
|
22
|
Nopwinyuwong A, Kaisone T, Hanthanon P, Nandhivajrin C, Boonsupthip W, Pechyen C, Suppakul P. Effects of Nanoparticle Concentration and Plasticizer Type on Colorimetric Behavior of Polydiacetylene/Silica Nanocomposite as Time-temperature Indicator. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.egypro.2014.07.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|