1
|
Govindaraj M, Sriram B, Wang SF, Muthukumaran MK, Kogularasu S, Chang-Chien GP, Arockia Selvi J.. Surfactant-Assisted Synthesis of Metallic-Ag/Nickel Oxide on Graphitic Carbon Nitride Composite: An Electrochemical Investigation of Synthetic Vanillin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11287-11299. [PMID: 39914860 PMCID: PMC11843540 DOI: 10.1021/acsami.4c19099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
In this study, we developed a sensor based on surfactant-assisted synthesis of metallic silver-enriched nickel oxide confined on graphitic carbon nitride (Ag/NiO/g-CN)-modified electrode to construct a sensitive and selective voltammetric sensor for detecting vanillin in confectionaries samples. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analyses confirmed the crystal structure and respective functional groups of the synthesized Ag/NiO/g-CN composite. The valence states of silver, nickel, oxygen, carbon, and nitrogen were analyzed using X-ray photoelectron spectroscopy (XPS), while energy-dispersive X-ray analysis (EDX) and morphological investigations revealed the elemental distribution and nano-structured particles, respectively. The electrocatalyst-modified electrode properties and electrochemical sensing performances were evaluated using different voltammetric and spectroscopic techniques. The Ag/NiO/g-CN composite, exhibiting a large active surface area, excellent conductivity, and synergistic interaction, proved to be a suitable electrode material for electrochemical sensor applications. The sensor demonstrated a detection limit of 0.9 nM and a broad linear range of 0.004-366.8 μM. Electrochemical investigations further highlighted the sensor's excellent reproducibility, repeatability, fast response, and functional stability. The constructed sensor also exhibited outstanding selectivity against potential interferents and demonstrated its practical applicability by successfully detecting vanillin in spiked food samples.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| | - Balasubramanian Sriram
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Magesh Kumar Muthukumaran
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| | - Sakthivel Kogularasu
- Super
Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center
for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Guo-Ping Chang-Chien
- Super
Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center
for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Institute
of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Arockia Selvi J.
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| |
Collapse
|
2
|
Gonçalves-Filho D, De Souza D. Trends in pulse voltammetric techniques applied to foodstuffs analysis: The food additives detection. Food Chem 2024; 454:139710. [PMID: 38815328 DOI: 10.1016/j.foodchem.2024.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Food additives are chemical compounds intentionally added during foodstuff production to control technological functions, such as pH, viscosity, stability (color, flavor, taste, and odor), homogeneity, and loss of nutritional value. These compounds are fundamental in inhibition the degradation process and prolonging the shelf life of foodstuffs. However, their inadequate employment or overconsumption can adversely affect consumers' health with the development of allergies, hematological, autoimmune, and reproductive disorders, as well as the development of some types of cancer. Thus, the development and application of simple, fast, low-cost, sensitivity, and selectivity analytical methods for identifying and quantifying food additives from various chemical classes and in different foodstuffs are fundamental to quality control and ensuring food safety. This review presents trends in the detection of food additives in foodstuffs using differential pulse voltammetry and square wave voltammetry, the main pulse voltammetric techniques, indicating the advantages, drawbacks, and applicability in food analysis. Are discussed the importance of adequate choices of working electrode materials in the improvements of analytical results, allowing reliable, accurate, and inexpensive voltammetric methods for detecting these compounds in foodstuffs samples.
Collapse
Affiliation(s)
- Danielle Gonçalves-Filho
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
3
|
Ma H, Khazaee Nejad S, Vargas Ramos D, Al-Shami A, Soleimani A, Amirghasemi F, Mohamed MA, Mousavi MPS. Lab-on-a-lollipop (LoL) platform for preventing food-induced toxicity: all-in-one system for saliva sampling and electrochemical detection of vanillin. LAB ON A CHIP 2024; 24:4306-4320. [PMID: 39207360 PMCID: PMC11446580 DOI: 10.1039/d4lc00436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Saliva has emerged as a primary biofluid for non-invasive disease diagnostics. Saliva collection involves using kits where individuals stimulate saliva production via a chewing device like a straw, then deposit the saliva into a designated collection tube. This process may pose discomfort to patients due to the necessity of producing large volumes of saliva and transferring it to the collection vessel. This work has developed a saliva collection and analysis device where the patient operates it like a lollipop, stimulating saliva production. The lollipop-mimic device contains yarn-based microfluidic channels that sample saliva and transfer it to the sensing zone embedded in the stem of the device. We have embedded electrochemical sensors in the lollipop platform to measure vanillin levels in saliva. Vanillin is the most common food flavoring additive and is added to most desserts such as ice cream, cakes, and cookies. Overconsumption of vanillin can cause side effects such as muscle weakness, and damage to the liver, kidneys, stomach, and lungs. We detected vanillin using direct oxidation at a laser-induced graphene (LIG) electrode. We showed a dynamic range of 2.5 μM to 30 μM, covering the physiologically relevant concentration of vanillin in saliva. The lab-on-a-lollipop platform requires only 200 μL of saliva and less than 2 minutes to fill the channels and complete the measurement. This work introduces the first sensor-embedded lollipop-mimic saliva collection and measurement system.
Collapse
Affiliation(s)
- Haozheng Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Daniel Vargas Ramos
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Abdulrahman Al-Shami
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Mona A Mohamed
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
| |
Collapse
|
4
|
Şentürk Z. A Journey from the Drops of Mercury to the Mysterious Shores of the Brain: The 100-Year Adventure of Voltammetry. Crit Rev Anal Chem 2024; 54:1342-1353. [PMID: 35994268 DOI: 10.1080/10408347.2022.2113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Voltammetry, which is at the core of electroanalytical chemistry, is an analytical method that investigates and evaluates the current-potential relationship obtained at a given working electrode. If it is used dropping mercury as working electrode, the method is called as polarography. The current year 2022 marks the 100th anniversary of the discovery of polarography by Czech Jaroslav Heyrovský. He received the Nobel Prize in Chemistry in 1959 for this discovery and his contribution to the scientific world. A hundred years, within the endless existence of the universe is maybe nothing. A hundred years, in the history of mankind is a line, maybe a short paragraph. But, in science, a hundred years can lead to very significant advances in a field and often to the birth and establishment of an entirely new scientific discipline. Indeed, in the last hundred years, the design and use of new electrochemical devices, depending on the progress in microelectronics and computer technologies, has almost revolutionized voltammetry. Besides these developments, due to the fact that the redox (oxidation/reduction) process is very basic for living organisms; the voltammetry, especially with the beginning of the 21st century, has started to be used as a very powerful tool in neuroscience to solve the mystery of the brain (the basic problems of biomolecules with physiological and genetic importance in brain tissue). This review article is an overview of the 100-year history and fascinating development of voltammetry from Heyrovský to the present.
Collapse
Affiliation(s)
- Zühre Şentürk
- Faculty of Science, Department of Analytical Chemistry, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
5
|
Gibi C, Liu CH, Anandan S, Wu JJ. Recent Advances on Electrochemical Sensors for Detection of Contaminants of Emerging Concern (CECs). Molecules 2023; 28:7916. [PMID: 38067644 PMCID: PMC10707923 DOI: 10.3390/molecules28237916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.
Collapse
Affiliation(s)
- Chinchu Gibi
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Cheng-Hua Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Trichy 620015, India;
| | - Jerry J. Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| |
Collapse
|
6
|
Ali I, Mısır M, Demir E, Dinçer İ, Locatelli M, ALOthman ZA. Nano solid phase micro membrane tip and electrochemical methods for vanillin analysis in chocolate samples. Anal Biochem 2023; 677:115268. [PMID: 37524223 DOI: 10.1016/j.ab.2023.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
A polymer-based nanosensor and electrochemical methods were developed for the quantitative analysis of vanillin. The sample preparation was done using nano solid phase micro membrane tip extraction (NSPMMTE). A novel poly(phenylalanine)/TiO2/CPE sensor was built as the working electrode for the first time for the analysis of the vanillin substance. The electrochemical behavior and analytical performance of vanillin were examined in detail by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) techniques via the oxidation process. The optimized modules of the DPSV technique that affected the vanillin peak current and peak potential were pH, pulse amplitude, step potential, and deposition time. The electroactive surface areas of bare CPE, TiO2/CPE, and poly(phenylalanine)/TiO2/CPE electrodes were found to be 0.135 cm2, 0.155 cm2, and 0.221 cm2, respectively. The limit of detection (LOD) was 32.6 μg/L in the 0.25-15.0 mg/L working range at pH 7.0. The selectivity of the proposed DPSV method for the determination of vanillin on the modified electrode was investigated in the presence of various organic and inorganic substances, and the determination of vanillin with high recovery was achieved with less than 5% relative error. The analytical application was applied in chocolate samples and the DPSV method was found highly efficient, reproducible, and selective.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi, 110025, India.
| | - Murat Mısır
- Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, 40100, Kırşehir, Turkey
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - İrem Dinçer
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio ", Via dei Vestini 31, Chieti, 66100, Italy
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Metal nanocomposites-based electrochemical sensor for the detection of vanillin (food additives): Experimental and theoretical approach. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Deivanayaki S, Jayamurugan P, Ashokan S, Gopala Krishnan V, Yogeswari B, Ubaidullah M, pandit B, Sarma G, Narsetti HK. Growth of non-enzymatic cholesterol biosensor using TiO2 decorated graphene oxide with bare GCE and PPy-GCE. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Prinith NS, Manjunatha JG, Albaqami MD, Mohamed Tighezza A, Sillanpää M. Electrochemical Analysis of Food additive Vanillin using Poly (Aspartic Acid) Modified Graphene and Graphite composite Paste Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202203572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nambudumada S. Prinith
- Department of Chemistry, FMKMC College Constituent College of Mangalore University, Madikeri Karnataka India
| | - Jamballi G. Manjunatha
- Department of Chemistry, FMKMC College Constituent College of Mangalore University, Madikeri Karnataka India
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Ammar Mohamed Tighezza
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering Aarhus University, Norrebrogade 44 8000 Aarhus C Denmark
| |
Collapse
|
10
|
Chen T, Tang Z, Hu C. The combination of terahertz spectroscopy and density functional theory for vibrational modes and weak interactions analysis of vanillin derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Fort CI, Cobzac SCA, Turdean GL. Second-order derivative of square-wave voltammetry for determination of vanillin at platinum electrode. Food Chem 2022; 385:132711. [PMID: 35313191 DOI: 10.1016/j.foodchem.2022.132711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
A simple and sensitive method of data treatment by second-order derivative square wave voltammetry (SD-SWV) was developed for the determination of vanillin at a platinum electrode. It was shown that the irreversible oxidation reaction is controlled by the adsorption and occurs following a mechanism involving two electrons, similar to other phenolic derivatives. The experimental parameters of SWV which exert influence on vanillin determination, such as frequency, pulse amplitude, or step potential, were optimized. The calibration curve shows a linear range between 50 and 430 nM vanillin with a detection limit of about 19 nM (signal/noise = 3). The mathematical treatment of experimental data leads to enhances the sensitivity of the determination and was successfully used for the estimation of vanillin in commercial food products.
Collapse
Affiliation(s)
- Carmen Ioana Fort
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Electrochemistry and Non-Conventional Materials, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania
| | - Simona Codruta Aurora Cobzac
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania.
| | - Graziella Liana Turdean
- "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Electrochemistry and Non-Conventional Materials, Arany Janos St.11, RO-400028 Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Manikandan VS, Boateng E, Durairaj S, Chen A. Electrochemical Sensing of Vanillin Based on Fluorine-Doped Reduced Graphene Oxide Decorated with Gold Nanoparticles. Foods 2022; 11:foods11101448. [PMID: 35627019 PMCID: PMC9140755 DOI: 10.3390/foods11101448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
4-hydroxy-3-methoxybenzaldehyde (vanillin) is a biophenol compound that is relatively abundant in the world’s most popular flavoring ingredient, natural vanilla. As a powerful antioxidant chemical with beneficial antimicrobial properties, vanillin is not only used as a flavoring agent in food, beverages, perfumery, and pharmaceutical products, it may also be employed as a food-preserving agent, and to fight against yeast and molds. The widespread use of vanilla in major industries warrants the need to develop simple and cost-effective strategies for the quantitative determination of its major component, vanillin. Herein, we explore the applications of a selective and sensitive electrochemical sensor (Au electrodeposited on a fluorine-doped reduced-graphene-oxide-modified glassy-carbon electrode (Au/F-rGO/GCE)) for the detection of vanillin. The electrochemical performance and analytical capabilities of this novel electrochemical sensor were investigated using electrochemical techniques including cyclic voltammetry and differential pulse voltammetry. The excellent sensitivity, selectivity, and reproducibility of the proposed electrochemical sensor may be attributed to the high conductivity and surface area of the formed nanocomposite. The high performance of the sensor developed in the present study was further demonstrated with real-sample analysis.
Collapse
Affiliation(s)
- Venkatesh S. Manikandan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Emmanuel Boateng
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
| | - Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
- Correspondence: ; Tel.: +1-519-8244120 (ext. 54764)
| |
Collapse
|
13
|
Kouhi I, Parvizi Fard G, Alipour E, Saadatirad A. Development of an electrochemical sensor for determination of vanillin in some food stuffs. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Iraj Kouhi
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Golnaz Parvizi Fard
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Esmaeel Alipour
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Afsaneh Saadatirad
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
14
|
Karakaya S, Kaya İ. A Novel Sensitive and Selective Amperometric Detection Platform for the Vanillin Content in Real Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serkan Karakaya
- Polymer Synthesis and Analysis Laboratory Department of Chemistry Faculty of Science and Arts Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| | - İsmet Kaya
- Polymer Synthesis and Analysis Laboratory Department of Chemistry Faculty of Science and Arts Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| |
Collapse
|
15
|
Square wave anodic adsorptive stripping voltammetric determination of cefpodoxime proxetil by using pencil graphite electrode. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Hoshyar SA, Barzani HA, Yardım Y, Şentürk Z. The effect of CTAB, a cationic surfactant, on the adsorption ability of the boron-doped diamond electrode: Application for voltammetric sensing of Bisphenol A and Hydroquinone in water samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Hayes PE, Buzid A, Luong JHT, Glennon JD. Rapid Nanomolar Detection of Guaiacol from its Precursors Using a Core‐shell Reversed‐phase Column Coupled with a Boron‐doped Diamond Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Phyllis E. Hayes
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| | - Alyah Buzid
- Department of Chemistry, College of Science King Faisal University P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | - John H. T. Luong
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| | - Jeremy D. Glennon
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| |
Collapse
|
18
|
Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Subnanomolar detection of promethazine abuse using a gold nanoparticle-graphene nanoplatelet-modified electrode. Mikrochim Acta 2020; 187:646. [PMID: 33165663 DOI: 10.1007/s00604-020-04616-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
A simple, sensitive, and effective adsorptive stripping voltammetric sensor for the detection of trace-level promethazine was created based on a gold nanoparticle-graphene nanoplatelet-modified glassy carbon electrode (AuNP-GrNP/GCE). AuNP-GrNP nanocomposites were synthesized using an electroless deposition process, and the morphology was characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical behavior and detection of promethazine at the AuNP-GrNP/GCE were investigated utilizing cyclic voltammetry and adsorptive stripping voltammetry. The AuNP-GrNP/GCE showed outstanding synergistic electrochemical activity for promethazine oxidation, a highly active surface area, great adsorptivity, and outstanding catalytic properties. The electrolyte pH, amount of AuNP-GrNP nanocomposite, preconcentration potential (vs. Ag/AgCl), and time were optimized to obtain a high performance electrochemical sensor. Under optimal conditions, the proposed sensor displayed two linear concentration ranges from 1.0 nmol L-1 to 1.0 μmol L-1 and from 1.0 to 10 μmol L-1. The limits of detection and quantitation were 0.40 and 1.4 nmol L-1, respectively. This sensor displayed high sensitivity, a capability for rapid analysis, and excellent repeatability and reproducibility. The developed sensor was effective and practical for promethazine detection in biological fluids and forensic samples, and the obtained results exhibited excellent agreement with the results obtained using the method described in the British Pharmacopoeia. Graphical abstract.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
19
|
Tabanlıgil Calam T. Voltammetric determination and electrochemical behavior of vanillin based on 1H-1,2,4-triazole-3-thiol polymer film modified gold electrode. Food Chem 2020; 328:127098. [PMID: 32470775 DOI: 10.1016/j.foodchem.2020.127098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/08/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Poly(1H-1,2,4-triazole-3-thiol) (poly(T3T)) conductive film was coated successfully on the gold electrode (Au). The electrochemical behavior of vanillin (VAN) was studied on the 1H-1,2,4-triazole-3-thiol-Au (T3T-Au) electrode. The determination of VAN was performed on the T3T-Au electrode using a differential pulse voltammetry (DPV) technique. In order to detect the concentration of VAN, suitable supporting electrolyte solution and pH value were determined. At pH 3 in HClO4 solution, the anodic peak current of VAN obtained with the T3T-Au electrode is 4.3 times greater than the bare Au electrode. The response oxidation peak current and concentration of VAN showed a good linear relationship in the range of 0.1-11.3 µM. The limit of detection was found as 0.04 µM. Besides, the reproducibility, repeatability, stability, and interference measurements were also assayed. This sensor was applied successfully for the detection of VAN in synthetic samples and various food samples.
Collapse
|
20
|
Sarakhman O, Švorc Ľ. A Review on Recent Advances in the Applications of Boron-Doped Diamond Electrochemical Sensors in Food Analysis. Crit Rev Anal Chem 2020; 52:791-813. [PMID: 33028086 DOI: 10.1080/10408347.2020.1828028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The usage of boron-doped diamond (BDD) material has found to be very attractive in modern electroanalytical methods and received massive consideration as perspective electrochemical sensor due to its outstanding (electro)chemical properties. These generally known facilities include large potential window, low background currents, ability to withstand extreme potentials and strong tendency to resist fouling compared to conventional carbon-based electrodes. As evidence of superiority of this material, couple of reviews describing the overview of various applications of BDD electrodes in the field of analytical and material chemistry has been reported in scientific literature during last decade. However, herein proposed review predominantly focuses on the most recent developments (from 2009 to 2020) dealing with the application of BDD as an advanced and environmental-friendly sensor platform in food analysis. The main method characteristics of analysis of various organic food components with different chemical properties, including additives, flavor and aroma components, phenolic compounds, flavonoids and pesticides in food matrices are described in more details. The importance of BDD surface termination, presence of sp2 content and boron doping level on electrochemical sensing is discussed. Apart from this, a special attention is paid to the evaluation of main analytical characteristics of the BDD electrochemical sensor in single- and multi-analyte detection mode in food analysis. The recent achievements in the utilizing of BDD electrodes in amperometric detection coupled to flow injection analysis, batch injection analysis, and high-performance liquid chromatography are also commented. Moreover, actual trends in sample preparation techniques prior to electrochemical sensing in food analysis are referred.
Collapse
Affiliation(s)
- Olha Sarakhman
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
21
|
Peng J, Wei L, Liu Y, Zhuge W, Huang Q, Huang W, Xiang G, Zhang C. Novel porous iron phthalocyanine based metal-organic framework electrochemical sensor for sensitive vanillin detection. RSC Adv 2020; 10:36828-36835. [PMID: 35517930 PMCID: PMC9057021 DOI: 10.1039/d0ra06783k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Vanillin is widely used as a flavor enhancer and is known to have numerous other interesting properties, including antidepressant, anticancer, anti-inflammatory, and antioxidant effects. However, as excess vanillin consumption can affect liver and kidney function, simple and rapid detection methods for vanillin are required. Herein, a novel electrochemical sensor for the sensitive determination of vanillin was fabricated using an iron phthalocyanine (FePc)-based metal-organic framework (MOF). Scanning electron microscopy and transmission electron microscopy showed that the FePc MOF has a hollow porous structure and a large surface area, which impart this material with high adsorption performance. A glassy carbon electrode modified with the FePc MOF exhibited good electrocatalytic performance for the detection of vanillin. In particular, this vanillin sensor had a wide linear range of 0.22-29.14 μM with a low detection limit of 0.05 μM (S/N = 3). Moreover, the proposed sensor was successfully applied to the determination of vanillin in real samples such as vanillin tablets and human serum.
Collapse
Affiliation(s)
- Jinyun Peng
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Liying Wei
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
- School of Pharmacy, Henan University of Traditional Chinese Medicine Zhengzhou 450046 China
| | - Yuxia Liu
- College of Physics and Electronic Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China
| | - Wenfeng Zhuge
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Qing Huang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Wei Huang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Gang Xiang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Cuizhong Zhang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| |
Collapse
|
22
|
High sensitive voltammetric sensor for nanomolarity vanillin detection in food samples via manganese dioxide nanowires hybridized electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104885] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Bian Z, Fang G, Wang R, Zhan D, Yao Q, Wu Z. A water-soluble boronic acid sensor for caffeic acid based on double sites recognition. RSC Adv 2020; 10:28148-28156. [PMID: 35519105 PMCID: PMC9055677 DOI: 10.1039/d0ra00980f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Due to reversibly and covalently binding with Lewis bases and polyols, boronic acid compounds as fluorescent sensors have been widely reported to recognize carbohydrates, ions, hydrogen peroxide, and so on. However, boronic acid sensors for highly selective recognition of caffeic acid rather than catechol or catechol derivatives have not been reported yet. Herein a novel water-soluble sensor 5c with double recognition sites based on a boronic acid was reported. When 2.3 × 10-4 M of caffeic acid was added, the fluorescence intensity of sensor 5c decreased by 99.6% via inner filter effect (IFE) because its excitation spectrum well overlaps with the absorption spectrum of caffeic acid under neutral condition, while the fluorescence increased or did not change obviously after binding with other analytes including carbohydrates and other catechol derivatives. In addition, the response time to caffeic acid is fast at room temperature, and a high binding constant (9245.7 ± 348.3 M-1) and low LOD (1.81 × 10-6 M) was calculated. Moreover, determination of caffeic acid content in caffeic acid tablets was studied, and the recovery rate is sufficient. Therefore, sensor 5c can be used as a potential tool for detecting biologically significant caffeic acid in real samples.
Collapse
Affiliation(s)
- Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Ran Wang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Dongxue Zhan
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
24
|
Facile Fabrication of CeO2/Electrochemically Reduced Graphene Oxide Nanocomposites for Vanillin Detection in Commercial Food Products. NANOMATERIALS 2020; 10:nano10071356. [PMID: 32664495 PMCID: PMC7408163 DOI: 10.3390/nano10071356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
In this paper, CeO2 nanoparticles were synthesized by the solvothermal method and dispersed uniformly in graphene oxide (GO) aqueous solution by ultrasonication. The homogeneous CeO2-GO dispersion was coated on the surface of a glassy carbon electrode (GCE), and the CeO2/electrochemically reduced graphene oxide modified electrode (CeO2/ERGO/GCE) was obtained by potentiostatic reduction. The results of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) showed that CeO2 nanocrystals were uniformly coated by gossamer like ERGO nanosheets. The electrochemical behavior of vanillin on the CeO2/ERGO/GCE was studied by cyclic voltammetry (CV). It was found that the CeO2/ERGO/GCE has high electrocatalytic activity and good electrochemical performance for vanillin oxidation. Using the second derivative linear sweep voltammetry (SDLSV), the CeO2/ERGO/GCE provides a wide range of 0.04–20 µM and 20 µM–100 µM for vanillin detection, and the detection limit is estimated to be 0.01 µM after 120 s accumulation. This method has been successfully applied to the vanillin detection in some commercial foods.
Collapse
|
25
|
Voltammetric sensing of dinitrophenolic herbicide dinoterb on cathodically pretreated boron-doped diamond electrode in the presence of cationic surfactant. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104575] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Bogdanowicz R, Ficek M, Malinowska N, Gupta S, Meek R, Niedziałkowski P, Rycewicz M, Sawczak M, Ryl J, Ossowski T. Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Lourencao BC, Brocenschi RF, Medeiros RA, Fatibello‐Filho O, Rocha‐Filho RC. Analytical Applications of Electrochemically Pretreated Boron‐Doped Diamond Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000050] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bruna C. Lourencao
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Ricardo F. Brocenschi
- Centro de Estudos do Mar Universidade Federal do Paraná (UFPR) C.P. 61 83255-976 Pontal do Paraná – PR Brazil
| | - Roberta A. Medeiros
- Departamento de Química Universidade Estadual de Londrina (UEL) C.P. 10.011 86057-970 Londrina – PR Brazil
| | - Orlando Fatibello‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Romeu C. Rocha‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| |
Collapse
|
29
|
Attar T, Messaoudi B, Benhadria N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Erady V, Mascarenhas RJ, Satpati AK. Highly efficient and selective quantification of vanillin in food, beverages and pharmaceuticals using surfactant modified carbon paste sensor. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
32
|
Calam TT, Uzun D. Rapid and Selective Determination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropolymerized with 3‐Amino‐1,2,4‐triazole‐5‐thiol. ELECTROANAL 2019. [DOI: 10.1002/elan.201900328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tuğba Tabanlıgil Calam
- Gazi UniversityTechnical Sciences Vocational High School, Department of Chemical Technology 06500 Ankara Turkey
| | - Demet Uzun
- Gazi University, Science FacultyDepartment of Chemistry 06500 Ankara Turkey
| |
Collapse
|
33
|
Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Anal Chim Acta 2019; 1083:101-109. [PMID: 31493800 DOI: 10.1016/j.aca.2019.07.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
In this work, a facile ratiometric electrochemical aptasensor was developed towards sensitive and selective detection of vanillin, based on Ketjen black/ferrocene dual-doped zeolite-like MOFs (Fc-KB/ZIF-8) and electrodeposited gold nanoparticles (AuNPs) coupling with DNA aptamer. Fc-KB/ZIF-8 composites were prepared via one-pot solvothermal reaction and drop-coated on glassy carbon electrode (GCE) surface to form Fc-KB/ZIF-8@GCE. AuNPs were in-situ electro-deposited on the modified GCE. 5'-SH terminated aptamer of vanillin was combined with AuNPs via Au-S coupling to form aptamer-AuNPs/Fc-KB/ZIF-8@GCE as a new sensing platform. Under optimal conditions, electrochemical (square wave voltammetry) curves of this sensing platform were measured in electrolyte solutions containing vanillin. With increase of vanillin concentration (Cvan), vanillin had an increased peak current intensity (Ivan, as response signal). Fc doped into ZIF-8 had slight changes in its peak current intensity (IFc, as reference signal). There is a well plotting linear relationship between Ivan/IFc and the logarithm of Cvan ranging from 10 nM to 0.2 mM, with a low limit of detection of 3 nM. The aptamer-AuNPs/Fc-KB/ZIF-8@GCE was applied as a ratiometric electrochemical aptasensor of vanillin. This aptasensor had sensitive and selective electrochemical signal responses on vanillin, over potential interferents. This aptasensor enabled vanillin detection in real food samples, showing high detection performance. Experimental results testified that this aptasensor had high reliability and practicability for vanillin determination in real samples.
Collapse
|
34
|
Bakytkarim Y, Tursynbolat S, Zeng Q, Huang J, Wang L. Nanomaterial ink for on-site painted sensor on studies of the electrochemical detection of organophosphorus pesticide residuals of supermarket vegetables. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Chen L, Chaisiwamongkhol K, Chen Y, Compton RG. Rapid Electrochemical Detection of Vanillin in Natural Vanilla. ELECTROANAL 2019. [DOI: 10.1002/elan.201900037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lifu Chen
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryOxford University South Parks Road Oxford OX1 3QZ UK
| | - Korbua Chaisiwamongkhol
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryOxford University South Parks Road Oxford OX1 3QZ UK
| | - Yuqi Chen
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryOxford University South Parks Road Oxford OX1 3QZ UK
| | - Richard G. Compton
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryOxford University South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
36
|
Yang M, Compton RG. Adsorption processes coupled with mass transport at macro-electrodes: New insights from simulation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Voltammetric determination of ethylvanillin and methylvanillin sum at carbon paste electrode modified by sodium dodecyl sulfate in selected foodstuffs. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2266-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Gupta VK, Karimi-Maleh H, Agarwal S, Karimi F, Bijad M, Farsi M, Shahidi SA. Fabrication of a Food Nano-Platform Sensor for Determination of Vanillin in Food Samples. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2817. [PMID: 30150515 PMCID: PMC6164530 DOI: 10.3390/s18092817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022]
Abstract
Herein, we describe the fabrication of NiO decorated single wall carbon nanotubes (NiO-SWCNTs) nanocomposites using the precipitation method. The synthesized NiO-SWCNTs nanocomposites were characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Remarkably, NiO-SWCNTs and 1-butylpyridinium hexafluorophosphate modified carbon paste electrode (CPE/NiO-SWCNTs/BPrPF6) were employed for the electrochemical detection of vanillin. The vanillin sensor showed an ultra-high sensitivity of 0.3594 μA/μM and a low detection limit of 0.007 μM. In the final step, the NiO-SWCNTs/BPrPF6 was used as the suitable tool for food analysis.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Department of Applied Chemistry, University of Johannesburg, Johannesburg 17011, South Africa.
| | - Hassan Karimi-Maleh
- Laboratory of Nanotechnology, Department of Chemical Engineering, Quchan University of Technology, Quchan 94771-67335, Iran.
| | - Shilpi Agarwal
- Department of Applied Chemistry, University of Johannesburg, Johannesburg 17011, South Africa.
| | - Fatemeh Karimi
- Laboratory of Nanotechnology, Department of Chemical Engineering, Quchan University of Technology, Quchan 94771-67335, Iran.
| | - Majede Bijad
- Department of Agriculture, Sari Branch, Islamic Azad University, Sari 48161-19318, Mazandaran, Iran.
| | - Mohammad Farsi
- Department of Agriculture, Sari Branch, Islamic Azad University, Sari 48161-19318, Mazandaran, Iran.
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol 46311-39631, Mazandaran, Iran.
| |
Collapse
|
39
|
Ning J, He Q, Luo X, Wang M, Liu D, Wang J, Liu J, Li G. Rapid and Sensitive Determination of Vanillin Based on a Glassy Carbon Electrode Modified with Cu₂O-Electrochemically Reduced Graphene Oxide Nanocomposite Film. SENSORS 2018; 18:s18092762. [PMID: 30135387 PMCID: PMC6164793 DOI: 10.3390/s18092762] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 12/25/2022]
Abstract
A facile cuprous oxide nanoparticles functionalized electro-reduced graphene oxide modified glassy carbon electrode (denoted as Cu2O NPs-ERGO/GCE) was fabricated via a simple physical adsorption and electrochemical reduction approach. Cyclic voltammetry and second-order derivative linear scan voltammetry were used to investigate the electrocatalysis oxidation of vanillin on the Cu2O NPs-ERGO/GCE. The compound yielded a well-defined voltammetric response in 0.1 M H2SO4 at 0.916 V (vs. saturated calomel electrode (SCE)). A linear calibration graph was obtained in the concentration range of 0.1 μM to 10 μM and 10 μM to 100 μM, while the detection limit (S/N = 3) is 10 nM. In addition, the Cu2O NPs-ERGO/GCE presented well anti-interference ability, stability, and reproducibility. It was used to detect vanillin sensitively and rapidly in different commercial food products, and the results were in agreement with the values obtained by high performance liquid chromatography.
Collapse
Affiliation(s)
- Jingheng Ning
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Quanguo He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Xin Luo
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Min Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Donglin Liu
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Jianhui Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Jun Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
40
|
Ziyatdinova GK, Antonova TS, Mubarakova LR, Budnikov HC. An Amperometric Sensor Based on Tin Dioxide and Cetylpyridinium Bromide Nanoparticles for the Determination of Vanillin. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818080129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Baluchová S, Barek J, Tomé LI, Brett CM, Schwarzová-Pecková K. Vanillylmandelic and Homovanillic acid: Electroanalysis at non-modified and polymer-modified carbon-based electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Vosáhlová J, Koláčná L, Daňhel A, Fischer J, Balintová J, Hocek M, Schwarzová-Pecková K, Fojta M. Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Altunay N. Development of vortex-assisted ionic liquid-dispersive microextraction methodology for vanillin monitoring in food products using ultraviolet-visible spectrophotometry. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Zhao J, Xia H, Yu T, Jin L, Li X, Zhang Y, Shu L, Zeng L, He Z. A colorimetric assay for vanillin detection by determination of the luminescence of o-toluidine condensates. PLoS One 2018; 13:e0194010. [PMID: 29677193 PMCID: PMC5909897 DOI: 10.1371/journal.pone.0194010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 11/19/2022] Open
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde), a food additive with rich milk flavor, is commonly used in the food, beverage and cosmetic industries. However, excessive consumption of vanillin may cause liver and kidney damage. Therefore, methods for detecting and controlling the level of vanillin in food, especially in infant powder, have important practical significance. In this study, we established a colorimetric assay for vanillin detection. The detection was performed under high-temperature and acidic conditions, which can induce the reaction of the aldehyde group of vanillin with the amino group of o-toluidine. The resulting product had a maximum absorption at 363 nm, which was quantified by a UV spectrophotometer. This assay had a limit of detection (LOD) of 1 pg mL−1 and a linear range between 1 μg mL−1 and 100 μg mL−1. The average recoveries at three spiked levels were in the range from 91.1% to 101.6% with a relative standard deviation (RSD) of 4.62% ~ 7.27%.
Collapse
Affiliation(s)
- Jin Zhao
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Affiliated Hospital of Guizhou Medical University, State Key Laboratory for Medicinal Plant Efficacy and Utilization, Guizhou Medical University, Guiyang, China
| | - Haixiong Xia
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Tingyu Yu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Jin
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Xuehua Li
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Yinghui Zhang
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Liping Shu
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong Province, China
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (ZXH); (LWZ)
| | - Zhixu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Affiliated Hospital of Guizhou Medical University, State Key Laboratory for Medicinal Plant Efficacy and Utilization, Guizhou Medical University, Guiyang, China
- * E-mail: (ZXH); (LWZ)
| |
Collapse
|
45
|
Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Mikrochim Acta 2018; 185:204. [DOI: 10.1007/s00604-018-2738-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
46
|
Cheraghi S, Taher MA, Karimi-Maleh H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.06.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Ali HS, Abdullah AA, Pınar PT, Yardım Y, Şentürk Z. Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: Its comparison with HPLC-DAD. Talanta 2017; 170:384-391. [DOI: 10.1016/j.talanta.2017.04.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 11/29/2022]
|
48
|
Alpar N, Pınar PT, Yardım Y, Şentürk Z. Voltammetric Method for the Simultaneous Determination of Melatonin and Pyridoxine in Dietary Supplements Using a Cathodically Pretreated Boron-doped Diamond Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nurcan Alpar
- Yuzuncu Yil University; Faculty of Pharmacy, Department of Analytical Chemistry; 65080 Van Turkey
| | - Pınar Talay Pınar
- Yuzuncu Yil University; Faculty of Pharmacy, Department of Analytical Chemistry; 65080 Van Turkey
| | - Yavuz Yardım
- Yuzuncu Yil University; Faculty of Pharmacy, Department of Analytical Chemistry; 65080 Van Turkey
| | - Zühre Şentürk
- Yuzuncu Yil University; Faculty of Science, Department of Analytical Chemistry; 65080 Van Turkey
| |
Collapse
|
49
|
Sivakumar M, Sakthivel M, Chen SM. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. J Colloid Interface Sci 2016; 490:719-726. [PMID: 27951514 DOI: 10.1016/j.jcis.2016.11.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
Well-defined CoS nanorods (NR) were synthesized using a simple hydrothermal method, and were tested as an electrode material for electro-oxidation of vanillin. The NR material was characterized with regard to morphology, crystallinity, and electro-activity by use of appropriate analytical techniques. The resulting CoS NR@Nafion modified glassy carbon electrode (GCE) exhibited efficient electro-oxidation of vanillin with a considerable linear range of current-vs-concentration (0.5-56μM vanillin) and a detection limit of 0.07μM. Also, food samples containing vanillin were studied to test suitability for commercial applications.
Collapse
Affiliation(s)
- Mani Sivakumar
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Mani Sakthivel
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
50
|
Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|