1
|
Zhang F, Wang X, Wang L, Zheng B, Zhang Y, Pan L. Weissella cibaria FAFU821 improved bread quality based on the three-dimensional network structure of its exopolysaccharide. Food Chem 2025; 475:143336. [PMID: 39978028 DOI: 10.1016/j.foodchem.2025.143336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
This study aimed to comprehensively investigate the structure of purified exopolysaccharide EPS821-2, and the effect of Weissella cibaria FAFU821 on bread quality. Here, the findings determined that EPS821-2 was composed of 95.97 % glucose and 3.31 % mannose, with a molecular weight of 758.77 kDa. In addition, EPS821-2 was mainly composed of α-(1 → 6) linkages with branches containing α-(1 → 2), α-(1, 3 → 6), and α-(1, 4 → 6). Interestingly, EPS821-2 exhibited a three-dimensional structure, which led to the hypothesis that W. cibaria FAFU821 contributed to the quality of bread. The results revealed that W. cibaria FAFU821 enhanced the viscoelasticity of sourdough. It is remarkable that sourdough bread femented by W. cibaria FAFU821 had an excellent water holding capacity and lower hardness. In particular, W. cibaria FAFU821 increased the volatile profile of bread, including linoleic acid ethyl ester and acetic acid. This work provided the scientific insight for the applications of W. cibaria FAFU821 and its synthesized EPS821-2 in bakery innovation.
Collapse
Affiliation(s)
- Fan Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Xiaoying Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
2
|
Islam MA, Islam S. Sourdough Bread Quality: Facts and Factors. Foods 2024; 13:2132. [PMID: 38998638 PMCID: PMC11241011 DOI: 10.3390/foods13132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The term "sourdough" denotes a dough composed of flour and water, fermented through the action of yeast and lactic acid bacteria. The utilization of sourdough fermentation technology can enhance the nutritional attributes of bread made from wheat grain. In recent times, sourdough bread has experienced a resurgence, fueled by growing consumer demand for healthier bread options. The market dynamics for sourdough illustrate its rapid expansion and significant role in the contemporary food industry. Sourdough fermentation improves nutritional qualities by altering the structure and function of proteins and starch, enhancing dietary fiber, volatile compound profiles, and antioxidant activity, and reducing FODMAPs. The quality of sourdough bread is influenced by several factors, including fermentation environment, flour particle size, protein quality, starch characteristics, and dietary fiber composition. Moreover, the incorporation of alternative grains (intermediate wheatgrass and legume flour) and non-flour ingredients (fruits, herbs, and dairy products) presents opportunities for creating sourdough bread with unique sensory and nutritional profiles. This review offers updated insights on the quality aspects of sourdough fermentation, the factors that influence the effectiveness of the sourdough fermentation process, sourdough technology with unconventional and non-flour ingredients, and the potential market for frozen sourdough, considering its convenience and extended shelf life.
Collapse
Affiliation(s)
- Md Ahmadul Islam
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shahidul Islam
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| |
Collapse
|
3
|
Dan H, Li H, Li C, Fang Z, Hu B, Chen H, Wang C, Chen S, Hui T, Wu W, Zeng Z, Liu Y. Application of sourdough in gluten-free bakery products. Crit Rev Food Sci Nutr 2024; 65:3048-3068. [PMID: 38783748 DOI: 10.1080/10408398.2024.2356256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACTSIn recent years, the demand for gluten-free (GF) bakery products has grown rapidly due to the remarkable rising number of celiac patients and the increasing health awareness of GF products. However, GF products generally suffer from defects such as poor sensorial level, low nutritional value, high prices and short shelf life. Sourdough is the important starter culture applied in bakery field, and it has been proven to be ideal for enhancing the overall quality of bakery products. This review aims to systematically reviewed the application of sourdough in GF bakery products and its improvement to GF bakery products in terms of texture, shelf life, nutrition and flavor. Its positive effects derive from the complex metabolic activities of sourdough microorganisms, such as acidification, proteolysis, production of exopolysaccharides (EPS), activation of endogenous enzymes, and production of antibacterial substances. Finally, researchers are encouraged to expand the use of sourdough in GF bakery products to increase the variety of GF products. And the technical and nutritional potential of sourdough should be developed more widely.
Collapse
Affiliation(s)
- Hangyan Dan
- College of Food Science, Sichuan Agricultural University, Yaan, China
- Sichuan Yaomazi Food Co., Ltd, Meishan, Sichuan, China
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Teng Hui
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Yaan, China
| |
Collapse
|
4
|
González-Alonso V, Pradal I, Wardhana YR, Cnockaert M, Wieme AD, Vandamme P, De Vuyst L. Microbial ecology and metabolite dynamics of backslopped triticale sourdough productions and the impact of scale. Int J Food Microbiol 2023; 408:110445. [PMID: 39491387 DOI: 10.1016/j.ijfoodmicro.2023.110445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
Triticale (X Triticosecale Wittmack) is a hybrid of wheat (Triticum aestivum L.) and rye (Secale cereale L.), combining the positive attributes of both cereals. However, it has not been exploited for sourdough production yet. Further, the effect of scale on sourdough production has not been investigated systematically up to now. The aims of the present study were to assess the microbial ecology and metabolomic output of eleven spontaneously fermented, backslopped sourdough productions made with triticale flour on a scale of 100, 200, 500, and 1000 g. The acidification profile [pH and total titratable acidity (TTA)], microbial diversity (culture-dependent and culture-independent), metabolite dynamics, and appropriate correlations were determined. After ten fermentation steps, different species of Lactobacillaceae were prevalent in the mature sourdoughs, in particular Latilactobacillus curvatus, Limosilactobacillus fermentum, and Pediococcus pentosaceus. The microbial diversity could be traced back to the grains and was also present in the milling fractions (flour, bran, and shorts). Furthermore, thanks to the use of Illumina-based high-throughput sequencing and an amplicon sequence variant (ASV) approach, the presence of undesirable bacterial groups (bacilli, clostridia, and enterobacteria) during the initial steps of the backslopping cycle was revealed, as well as a finetuned taxonomic diversity of the LAB genera involved. Small sourdough productions (100 and 200 g) selected for a lower species diversity and reached a stable consortium faster than large ones (500 and 1000 g). Although a comparable final pH of 3.6-4.0 was obtained, the TTA of small sourdoughs was lower than that of large ones. Regarding the metabolic output, the simultaneous production of mannitol and erythritol, beyond ethanol and glycerol, could be linked to sourdoughs in which Liml. fermentum was the sole LAB species present. Further, the use of the arginine deiminase pathway by P. pentosaceus and Liml. fermentum was obvious. An appropriate extraction method followed by liquid injection gas chromatography coupled to triple quadrupole tandem mass spectrometry allowed the quantification of interesting volatile organic compounds, such as ethyl lactate. These findings support the inclusion of triticale as a viable alternative to wheat or rye for the production of sourdoughs that can be integrated into bread-making production schemes.
Collapse
Affiliation(s)
- Víctor González-Alonso
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Yohanes Raditya Wardhana
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
5
|
Wang X, Huangfu X, Zhao M, Zhao R. Chinese traditional sourdough steamed bread made by retarded sponge-dough method: Microbial dynamics, metabolites changes and bread quality during continuous propagation. Food Res Int 2023; 163:112145. [PMID: 36596098 DOI: 10.1016/j.foodres.2022.112145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Continuous propagation of Chinese traditional sourdough (CTS) was adopted to simulate the industrial production of sourdough steamed bread made by retarded sponge-dough method (SSB). Establishment of a stable microbial ecosystem occurred in mature sourdough within four days of continuous propagation, as revealed by both microbial and metabolic analyses. Lactobacillus sanfranciscensis and Kazachstania humilis were the predominant bacterial and fungal species in mature sourdoughs. Their relative abundances changed significantly from the first to third day of continuous propagation while exhibited relatively constant from the fourth day onwards despite the use of flour/water for each back-slopping step. Major changes in the metabolites and fermentative characteristics were observed during the initial three days and dough samples showed little temporal metabolic and fermentative variations from the fourth days onwards. Consequently, volumetric and textural properties as well as the volatile flavor compounds of SSB displayed rather high stability from the fourth day onwards.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China
| | - Xinyan Huangfu
- College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China
| | - Mengyuan Zhao
- College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China
| | - Renyong Zhao
- College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
6
|
Innovative technologies optimizing the production process of “Castagne del Prete”: Impact on microstructure and volatile compounds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Boyaci Gunduz CP, Agirman B, Gaglio R, Franciosi E, Francesca N, Settanni L, Erten H. Evaluation of the variations in chemical and microbiological properties of the sourdoughs produced with selected lactic acid bacteria strains during fermentation. Food Chem X 2022; 14:100357. [PMID: 35693452 PMCID: PMC9178471 DOI: 10.1016/j.fochx.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Chemical, microbiological and VOCs profile showed the relevance of starter addition. MiSeq Illumina confirmed that Lactobacillus spp. constituted the major LAB group. Fructilactobacillus sanfranciscensis was the most isolated LAB species. Rapid acidifying LAB strains should be preferred for sourdough production. Number of VOCs increased in sourdoughs produced with starter culture.
This research aimed to analyze variations in chemical properties, microbiological characteristics and generated volatile organic compounds (VOCs) profile during sourdough fermentation. Sourdoughs were collected from different cities in Turkey at two different times and lactic acid bacteria (LAB) in the samples were identified with culture-independent and culture-dependent molecular methods. According to culture-dependent methodology, thirteen LAB species were identified. Lactobacillus spp. were identified as the major group according to MiSeq Illumina analysis. Technological potential of commonly isolated LAB species was evaluated. Due to high frequency of isolation, Fructilactobacillus sanfranciscensis and Lactiplantibacillus plantarum strains were better investigated for their technological traits useful in sourdough production. Experimental sourdoughs were produced with mono- and dual-culture of the selected strains and chemical properties and microbiological characteristics, as well as VOCs profile of the sourdoughs, were subjected to multivariate analysis which showed the relevance of added starter, in terms of acidification and VOCs profile.
Collapse
|
8
|
Blaiotta G, Romano R, Trifuoggi M, Aponte M, Miro A. Development of a Wet-Granulated Sourdough Multiple Starter for Direct Use. Foods 2022; 11:foods11091278. [PMID: 35564001 PMCID: PMC9105756 DOI: 10.3390/foods11091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The search for sourdough starters for the direct production of baked goods with all the advantages of biological sourdough fermentation is still a crucial issue. In this study, 43 Lactic Acid Bacteria strains isolated from mature sourdoughs were evaluated for features of technological interest and tested for fermentation ability. Three microbial combinations were selected and used to produce bread. Based on GC-MS and sensory analysis, bread made by using the three combinations of strains was characterized by a more complex aroma profile with the prevalence of VOCs typical of sourdough bread. To set up the best way to keep microbial viability upon drying, the three combinations were subject to freeze-drying and wet granulation, with the latter being used for the first time for food starters’ stabilization. Wet granulation ensured optimal strains’ viability. Surprisingly, the height attained by mature sourdoughs when inoculated with wet granulated starters was constantly higher than the height reached by sourdoughs made with the same starters as fresh cells. The microbial combination E75-B72 exhibited the best performances and may represent a starter able to ensure sourdough bread production in 16 h of fermentation at 28 °C.
Collapse
Affiliation(s)
- Giuseppe Blaiotta
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.B.); (R.R.)
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.B.); (R.R.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia, 80126 Naples, Italy;
| | - Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.B.); (R.R.)
- Correspondence: ; Tel.: +39-081-2539398
| | - Agnese Miro
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
9
|
Abstract
Cava lees are a sparkling wine by-product formed of dead microorganisms, tartaric acid and other inorganic compounds, with a potential for enhancing microbial growth. Lees are rich in antioxidant compounds as well as β-glucans and mannoproteins. The aim of this study was to evaluate the effect of different concentrations of cava lees (0–2% w/w) on the microbiota (LAB and yeasts) responsible for sourdough fermentation (8 days) to revalorize this by-product of the wine industry. The results showed that 2% cava lees promoted microbial growth and survival in both wheat and rye sourdoughs, except for yeast growth in rye, which stopped at day 3 of fermentation. Moreover, sourdough with lees achieved lower pH values as well as higher concentrations of organic acids, especially lactic and acetic acids (p < 0.05). To sum up, the use of cava lees in sourdough formulation promotes the growth and survival of microorganisms, which, in consequence, promotes a lower pH and greater amounts of organic acids. This could lead to microbial stability as well as changes in bread flavor.
Collapse
|
10
|
Effect of sourdough fermented with corn oil and lactic acid bacteria on bread flavor. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
12
|
Martín-Garcia A, Riu-Aumatell M, López-Tamames E. Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alba Martín-Garcia
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Montserrat Riu-Aumatell
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Elvira López-Tamames
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| |
Collapse
|
13
|
Dong Y, Karboune S. A review of bread qualities and current strategies for bread bioprotection: Flavor, sensory, rheological, and textural attributes. Compr Rev Food Sci Food Saf 2021; 20:1937-1981. [DOI: 10.1111/1541-4337.12717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Affiliation(s)
- YiNing Dong
- Department of Food Science and Agricultural Chemistry, Macdonald Campus McGill University Québec Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus McGill University Québec Canada
| |
Collapse
|
14
|
Volatile Organic Compounds in Breads Prepared with Different Sourdoughs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sourdough is an old example of a natural starter composed of a mixture of flour, water, and metabolites and is produced by naturally occurring lactic acid bacteria and yeasts that influence bread aroma. In this work, four types of sourdough were used to prepare bread: one sourdough with yeast beer and three with bacteria and yeasts. The physicochemical parameters (pH, moisture, water activity, and organic acids) of the bread and sourdoughs were assessed. Lactic, acetic, and succinic acids were found in considerable amounts in sourdoughs and the corresponding breads. The fermentation quotient (molar ratio between lactic and acetic acid) ranged from 0.39 to 3.4 in sourdoughs. Lactic acid was prevalent in all types of bread and showed the highest value in bread made from sourdough with a 1.5 bacteria/yeast ratio (8722.24 mg/kg). Moreover, volatile organic compounds were identified in bread samples. Alcohols, aldehydes, and acetic acid were mainly found. The alcohol concentration ranged from 140.88 to 401.20 ng/g. Aldehydes ranged from 185.01 to 454.95 ng/g, and acetic acid ranged from 91.40 to 173.81 ng/g. Bread prepared from sourdough with a 1.5 bacteria/yeast ratio showed a considerable amount of alcohols and acetic acid.
Collapse
|
15
|
Syrokou MK, Themeli C, Paramithiotis S, Mataragas M, Bosnea L, Argyri AA, Chorianopoulos NG, Skandamis PN, Drosinos EH. Microbial Ecology of Greek Wheat Sourdoughs, Identified by a Culture-Dependent and a Culture-Independent Approach. Foods 2020; 9:foods9111603. [PMID: 33158141 PMCID: PMC7694216 DOI: 10.3390/foods9111603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to assess the microecosystem of 13 homemade spontaneously fermented wheat sourdoughs from different regions of Greece, through the combined use of culture-dependent (classical approach; clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and identification by PCR species-specific for Lactiplantibacillus plantarum, and sequencing of the 16S-rRNA and 26S-rRNA gene, for Lactic Acid Bacteria (LAB) and yeasts, respectively) and independent approaches [DNA- and RNA-based PCR-Denaturing Gradient Gel Electrophoresis (DGGE)]. The pH and Total Titratable Acidity (TTA) values ranged from 3.64–5.05 and from 0.50–1.59% lactic acid, respectively. Yeast and lactic acid bacteria populations ranged within 4.60–6.32 and 6.28–9.20 log CFU/g, respectively. The yeast: LAB ratio varied from 1:23–1:10,000. A total of 207 bacterial and 195 yeast isolates were obtained and a culture-dependent assessment of their taxonomic affiliation revealed dominance of Lb. plantarum in three sourdoughs, Levilactobacillus brevis in four sourdoughs and co-dominance of these species in two sourdoughs. In addition, Companilactobacillusparalimentarius dominated in two sourdoughs and Fructilactobacillussanfranciscensis and Latilactobacillus sakei in one sourdough each. Lactococcus lactis, Lb. curvatus, Leuconostoc citreum, Ln. mesenteroides and Lb. zymae were also recovered from some samples. Regarding the yeast microbiota, it was dominated by Saccharomyces cerevisiae in 11 sourdoughs and Pichia membranifaciens and P. fermentans in one sourdough each. Wickerhamomyces anomalus and Kazachstania humilis were also recovered from one sample. RNA-based PCR-DGGE provided with nearly identical results with DNA-based one; in only one sample the latter provided an additional band. In general, the limitations of this approach, namely co-migration of amplicons from different species to the same electrophoretic position and multiband profile of specific isolates, greatly reduced resolution capacity, which resulted in only partial verification of the microbial ecology detected by culture-dependent approach in the majority of sourdough samples. Our knowledge regarding the microecosystem of spontaneously fermented Greek wheat-based sourdoughs was expanded, through the study of sourdoughs originating from regions of Greece that were not previously assessed.
Collapse
Affiliation(s)
- Maria K. Syrokou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Christina Themeli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece;
- Correspondence:
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece;
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 1 Sof. Venizelou St., 14123 Lycovrissi, Greece; (A.A.A.); (N.G.C.)
| | - Nikos G. Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 1 Sof. Venizelou St., 14123 Lycovrissi, Greece; (A.A.A.); (N.G.C.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Eleftherios H. Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| |
Collapse
|
16
|
Lancetti R, Sciarini L, Pérez GT, Salvucci E. Technological Performance and Selection of Lactic Acid Bacteria Isolated from Argentinian Grains as Starters for Wheat Sourdough. Curr Microbiol 2020; 78:255-264. [PMID: 33099682 DOI: 10.1007/s00284-020-02250-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022]
Abstract
The selection of lactic acid bacteria strains is interesting for the development of sourdough to obtain wheat bread with improved technological and nutritional properties. In this work, the performance of ten different LAB strains isolated from diverse cereals in wheat sourdough was evaluated. Five facultative heterofermentative (Lactobacillus pentosus ES124, Lactobacillus paralimentarius ES259, Lactobacillus plantarum ES137, Lactobacillus plantarum ATCC8014 and Lactobacillus plantarum ES147), three obligately heterofermentative (Lactobacillus brevis ES253, Lactobacillus fermentum ES142 and Lactobacillus fermentum ES148) and two homofermentative (Pediococcus acidilactici ES22 and Enterococcus faecium ES74) lactic acid bacteria strains were evaluated in ten single strain fermentations. Sugar profile, volatile compounds and proteolytic ability of sourdoughs were analyzed. The microbiological counts showed that facultative heterofermentative strains presented higher counts than homofermentative sourdoughs. Monosaccharides (glucose and fructose), maltose and sucrose, isomaltose and dextrin were detected in fermentations with homofermentative strains whilst in those with heterofermentative strains maltose/sucrose, isomaltose and dextrin were found. L. paralimentarius ES259 and L. pentosus ES124 showed the highest diversity of volatile compounds. L. plantarum ES137 and P. acidilactici ES22 were the strains with the highest proteolytic activity. The technological performance allowed us to select LAB as starters to develop breads with specific rheological properties and final quality.
Collapse
Affiliation(s)
- Romina Lancetti
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Cátedra de Química Biológica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Lorena Sciarini
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Cátedra de Química Biológica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Gabriela T Pérez
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Cátedra de Química Biológica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Emiliano Salvucci
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Cátedra de Química Biológica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina.
| |
Collapse
|
17
|
Adepehin J. Microbial diversity and pasting properties of finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) sourdoughs. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Effect of Rice Flour Fermentation with Lactobacillus spicheri DSM 15429 on the Nutritional Features of Gluten-Free Muffins. Foods 2020; 9:foods9060822. [PMID: 32580442 PMCID: PMC7353660 DOI: 10.3390/foods9060822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Lactobacillus Spicheri DSM 15429 strain was used to ferment rice flour, aiming at exploiting its influence on the amino-acids, minerals, lactic acid, total phenols, and antioxidant activity of the rice sourdough and gluten-free muffins. Gluten-free muffins were prepared by using 15% rice sourdough fermented with the above strain of lactic acid bacteria and compared with rice spontaneous fermentation. Methods like LC-MS (Liquid chromatography–mass spectrometry), AA (atomic absorption), HPLC (High-performance liquid chromatography), Folin–Ciocalteu, and 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) were used to fulfill the aim of the study. The addition of rice sourdough fermented with LAB was reflected in the chemical composition of the final baked good, improving its amount on bioactive compounds such as amino acids, mineral bioavailability, total phenols, and antioxidant activity. Total phenols and antioxidant activity increased their amount by 70.53% and 73.70%, respectively, meanwhile, lactic acid, minerals, and amino-acids increased their values at least twice. Thus, rice fermented with Lactobacilus spicheri DSM 15429 strain could be a tool to further increase the nutritional value of gluten-free baked products.
Collapse
|
19
|
Textural and Sensory Features Changes of Gluten Free Muffins Based on Rice Sourdough Fermented with Lactobacillus spicheri DSM 15429. Foods 2020; 9:foods9030363. [PMID: 32245079 PMCID: PMC7143808 DOI: 10.3390/foods9030363] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Gluten free products available on the market have a low textural quality associated with high crumbly structure, low-flavor, aroma, poor mouthfeel, less appearance, in comparison with the conventional final baked products. The aim of this study was to assess the influence of rice sourdough fermented with Lactobacillus spicheri DSM 15429 strain on textural, volatile profile, and sensorial properties of gluten free muffins in order to obtain baked goods with improved quality characteristics. Lactobacillus spicheri is a novel strain isolated from industrial rice sourdough but unexploited for bakery products manufacturing. The results showed that Lactobacillus spicheri DSM 15429 was able to growth in the rice flour influencing the texture and the volatile profile of gluten free muffins as well as their sensory characteristics. Both, textural parameters and volatiles recorded significant differences comparing to muffins obtained with a spontaneously fermented rice sourdough. Hardness and cohesiveness decreased while springiness and resilience of gluten free muffins improved their values. The volatile profile of gluten free muffins was significantly improved by utilization of the rice sourdough fermented with Lactobacilus spicheri DSM 15429. 3-methylbutanal, 2-methylbutanal, acetophenone and limonene were the main volatile derivatives responsible for aroma and odor scores of sensory analysis.
Collapse
|
20
|
Reale A, Di Renzo T, Boscaino F, Nazzaro F, Fratianni F, Aponte M. Lactic Acid Bacteria Biota and Aroma Profile of Italian Traditional Sourdoughs From the Irpinian Area in Italy. Front Microbiol 2019; 10:1621. [PMID: 31396170 PMCID: PMC6667676 DOI: 10.3389/fmicb.2019.01621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
This study identified the lactic acid bacteria (LAB) biota and the volatilome profile of 28 typical sourdoughs of Irpinia—a large area of the Campania region of Southern Italy where numerous breads are produced, even today, following the ancient procedures of sourdough fermentation and for which information on the microbiological and sensory profile is lacking in literature. For this purpose, microbial quality, LAB biodiversity, chemical, and technological characteristics, as well as aroma profile by solid-phase microextraction technique (SPME)–gas chromatography/mass spectrometry (GC/MS) of Irpinian sourdoughs were investigated. The dominant LAB microbiota was examined by both culture-dependent and culture-independent methods Polymerase Chain Reaction/Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Results showed a high biodiversity in LAB community whereas the most frequent lactobacilli species recognized were Lactobacillus plantarum (ca. 22% of total LAB isolates), Lactobacillus sanfranciscensis (11%), Lactobacillus paralimentarius (8%), and Lactobacillus rossiae (6.5%), whereas LAB cocci could be mainly referred to Pediococcus pentosaceus (9.5% of total LAB isolates), Leuconostoc spp. (7.8%), and Weissella cibaria (7.7%). Sourdoughs were characterized by the dominance of one or two LAB species, thus proving that the environment influences the selection and the establishment of few key LAB species and that no specific correlation can be traced between microbial composition and geographical origin of the samples. Furthermore, although sourdoughs were characterized by different qualitative and quantitative volatile organic compound (VOC) compositions, no noticeable correlation between volatilome profile and geographical origin was found. However, it emerged that for more isolated locations, it was possible to find the existence of microbial biotypes and sensory profiles with a strong identity, thus revealing the existence of highly traditional and evocative bread recipes in those geographical contexts.
Collapse
Affiliation(s)
- Anna Reale
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Tiziana Di Renzo
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Floriana Boscaino
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Florinda Fratianni
- Institute of Food Science, National Research Council, ISA-CNR, Avellino, Italy
| | - Maria Aponte
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Sulieman AA, Zhu KX, Peng W, Hassan HA, Obadi M, Ahmed MI, Zhou HM. Effect of Agaricus bisporus polysaccharide flour and inulin on the antioxidant and structural properties of gluten-free breads. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00107-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Effect of added enzymes and quinoa flour on dough characteristics and sensory quality of a gluten-free bakery product. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3072-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zeng H, Huang C, Lin S, Zheng M, Chen C, Zheng B, Zhang Y. Lotus Seed Resistant Starch Regulates Gut Microbiota and Increases Short-Chain Fatty Acids Production and Mineral Absorption in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9217-9225. [PMID: 28954513 DOI: 10.1021/acs.jafc.7b02860] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lotus seed resistant starch, known as resistant starch type 3 (LRS3), was orally administered to mice to investigate its effects on the gut microbiota, short-chain fatty acids (SCFAs) production, and mineral absorption. The results showed that mice fed LRS3 displayed a lower level of gut bacterial diversity than other groups. The numbers of starch-utilizing and butyrate-producing bacteria, such as Lactobacillus and Bifidobacterium and Lachnospiraceae, Ruminococcaceae, and Clostridium, respectively, in mice increased after the administration of medium and high doses of LRS3, while those of Rikenellaceae and Porphyromonadaceae decreased. Furthermore, SCFAs and lactic acid in mice feces were affected by LRS3, and lactate was fermented to butyrate by gut microbiota. LRS3 enhanced the intestinal absorption of calcium, magnesium, and iron, and this was dependent on the type and concentration of SCFAs, especially butyrate. Thus, LRS3 promoted the production of SCFAs and mineral absorption by regulating gut microbiota in mice.
Collapse
Affiliation(s)
- Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian P. R. China 350002
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Cancan Huang
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian P. R. China 350002
| | - Shan Lin
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian P. R. China 350002
| | - Mingjing Zheng
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian P. R. China 350002
| | - Chuanjie Chen
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian P. R. China 350002
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian P. R. China 350002
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian P. R. China 350002
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| |
Collapse
|
24
|
|
25
|
Pizarro F, Franco F. Volatile Organic Compounds at Early Stages of Sourdough Preparation Via Static Headspace and GC/MS Analysis. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2017. [DOI: 10.12944/crnfsj.5.2.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Major aroma volatile compounds from whole wheat and all-purpose sourdough and their evolution were evaluated through static headspace gas chromatography-mass spectrometry (SHS-GC/MS) analysis during 28 days of fermentation. Sourdoughs were prepared on 1:1 ratio of flour to water (mass to volume) and fermented spontaneously at room temperature. GC/MS measurements for the evolution of aroma volatile compounds were conducted at 24, 168, 336, 504, and 672 hours of fermentation. Whole wheat sourdough contained more aroma volatile compounds (62) than all-purpose sourdough (45). The major aroma volatile compounds of whole wheat sourdough were hydrocarbons, esters, alcohols, ketones, aldehydes, and heterocycles. Meanwhile, aldehydes were dominant in the all-purpose sourdough. During whole wheat sourdough fermentation, a decrease in peak area percent was observed for aldehydes, ketones, and heterocycles, whereas an increase in the case of hydrocarbons. On the other hand, aldehydes dramatically increased in peak area percent for all-purpose sourdough. Aroma volatile compounds emanating from sourdough fermentation can aid consumers as well as manufacturers with regards to the quality, shelf-life, and what characteristic aromas the final bread product will possess.
Collapse
Affiliation(s)
- Fritz Pizarro
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Francisco Franco
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
26
|
Rinaldi M, Paciulli M, Caligiani A, Scazzina F, Chiavaro E. Sourdough fermentation and chestnut flour in gluten-free bread: A shelf-life evaluation. Food Chem 2017; 224:144-152. [DOI: 10.1016/j.foodchem.2016.12.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023]
|
27
|
Microbial cell-free extracts affect the biochemical characteristics and sensorial quality of sourdough bread. Food Chem 2017; 237:159-168. [PMID: 28763982 DOI: 10.1016/j.foodchem.2017.05.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 01/16/2023]
Abstract
This study aimed to improve the sensorial quality of sourdough wheat bread by the addition of cell-free enzyme extracts (CFEs) from Lactobacillus sanfranciscensis (SF), Hafnia alvei (HF) and Debaryomyces hansenii (DH). CFEs were suitable sources of peptidases, glutamate dehydrogenase and cystathionine γ-lyase. The concentration of free amino acids (FAA) in the sourdoughs containing CFEs was higher than the control sourdough, produced without addition of CFEs. The community-level catabolic profiles showed that the highest number of carbohydrates, polymers and carboxylic acids were consumed in the SF sourdough. Breads produced with CFEs were characterized by higher specific volume than the control. The use of CFEs impacted on the profile of volatile organic compounds. Overall, positive correlations were found between some key-aroma compounds and enzyme activities/precursor FAA. The SF bread, characterized by highest level of alcohols, received the highest score for aroma and sweetness in the sensory analysis.
Collapse
|
28
|
|
29
|
|
30
|
Microbial Ecology and Process Technology of Sourdough Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:49-160. [PMID: 28732554 DOI: 10.1016/bs.aambs.2017.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes.
Collapse
|
31
|
Boscaino F, Cammarota G, Ottombrino A, Nazzaro M, Siano F, Volpe MG, Sorrentino A. Chemical, Volatile Profile and Shelf Life of Muffin Enriched with Supplementation Chestnut Cream. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Floriana Boscaino
- Institute of Food Sciences, National Research Council; Avellino Italy
| | | | | | - Melissa Nazzaro
- Institute of Food Sciences, National Research Council; Avellino Italy
| | - Francesco Siano
- Institute of Food Sciences, National Research Council; Avellino Italy
| | - Maria G. Volpe
- Institute of Food Sciences, National Research Council; Avellino Italy
| | - Alida Sorrentino
- Institute of Food Sciences, National Research Council; Avellino Italy
| |
Collapse
|
32
|
Demirkesen I. Formulation of Chestnut Cookies and their Rheological and Quality Characteristics. J FOOD QUALITY 2016. [DOI: 10.1111/jfq.12209] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ilkem Demirkesen
- Food Engineering Department, Middle East Technical University; Ankara Turkey
- Food Enterprises and Codex Department, Republic of Turkey Ministry of Food, Agriculture and Livestock, Gıda ve Kontrol Genel Müdürlüğü, Gıda İşletmeleri ve Kodeks Dairesi Başkanlığı; 06060 Ankara Turkey
| |
Collapse
|
33
|
|
34
|
Wang Y, Li Y, Yang J, Ruan J, Sun C. Microbial volatile organic compounds and their application in microorganism identification in foodstuff. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Silva LF, Casella T, Gomes ES, Nogueira MCL, De Dea Lindner J, Penna ALB. Diversity of Lactic Acid Bacteria Isolated from Brazilian Water Buffalo Mozzarella Cheese. J Food Sci 2015; 80:M411-7. [DOI: 10.1111/1750-3841.12771] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Luana Faria Silva
- UNESP-São Paulo State Univ; Food Engineering and Technology Dept; São José do Rio Preto Brazil
| | - Tiago Casella
- FAMERP-Medical School of São José do Rio Preto; Microbiology Laboratory; São José do Rio Preto Brazil
| | | | | | - Juliano De Dea Lindner
- UFSC-Federal Univ. of Santa Catarina; Food Science and Technology Dept; Florianópolis Brazil
| | | |
Collapse
|
36
|
Kanchiswamy CN, Malnoy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. FRONTIERS IN PLANT SCIENCE 2015; 6:151. [PMID: 25821453 PMCID: PMC4358370 DOI: 10.3389/fpls.2015.00151] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 05/02/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity, and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides, and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs by describing microbial-plants and microbial-microbial interactions. Furthermore, we discuss MVOCs role in inducing phenotypic plant responses and their potential physiological effects on crops. Finally, we analyze potential and actual limitations for MVOC use and deployment in field conditions as a sustainable strategy for improving productivity and reducing pesticide use.
Collapse
Affiliation(s)
- Chidananda Nagamangala Kanchiswamy
- Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund MachTrento, Italy,
- *Correspondence: Chidananda Nagamangala Kanchiswamy, Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund Mach, Via E.Mach 1, San Michele all'Adige, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund MachTrento, Italy,
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of TurinTurin, Italy
| |
Collapse
|
37
|
Ferreira RC, Ramos RM, Gonçalves LM, Almeida PJ, Rodrigues JA. Application of gas-diffusion microextraction to solid samples using the chromatographic determination of α-diketones in bread as a case study. Analyst 2015; 140:3648-53. [DOI: 10.1039/c5an00196j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, gas-diffusion microextraction was used for the direct analysis of solid samples (vicinal diketones in bread).
Collapse
Affiliation(s)
- Rui César Ferreira
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Rui Miguel Ramos
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Luís Moreira Gonçalves
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Paulo Joaquim Almeida
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - José António Rodrigues
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| |
Collapse
|
38
|
Aponte M, Boscaino F, Sorrentino A, Coppola R, Masi P, Romano A. Effects of fermentation and rye flour on microstructure and volatile compounds of chestnut flour based sourdoughs. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Makhoul S, Romano A, Cappellin L, Spano G, Capozzi V, Benozzi E, Märk TD, Aprea E, Gasperi F, El-Nakat H, Guzzo J, Biasioli F. Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:850-859. [PMID: 25230182 DOI: 10.1002/jms.3421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/04/2014] [Accepted: 06/22/2014] [Indexed: 06/03/2023]
Abstract
The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds.
Collapse
Affiliation(s)
- Salim Makhoul
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, TN, Italy; Department of Chemistry, University of Balamand, P. O. Box 100, Tripoli, Lebanon; MR PAM-équipe VALMIS, IUVV, 1 rue Claude Ladrey, 21078, Dijon Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Romano A, Blaiotta G, Di Cerbo A, Coppola R, Masi P, Aponte M. Spray-dried chestnut extract containing Lactobacillus rhamnosus
cells as novel ingredient for a probiotic chestnut mousse. J Appl Microbiol 2014; 116:1632-41. [DOI: 10.1111/jam.12470] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/14/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Affiliation(s)
- A. Romano
- Centre for Food Innovation and Development in the Food Industry; University of Naples Federico II; Portici Naples Italy
| | - G. Blaiotta
- Dipartimento di Agraria; Università degli Studi di Napoli Federico II; Portici Naples Italy
| | - A. Di Cerbo
- Dipartimento di Chirurgia Generale e Specialità Chirurgiche; Università degli Studi di Modena e Reggio Emilia; Modena Italy
| | - R. Coppola
- Istituto di Scienze dell'Alimentazione; ISA-CNR; Avellino Italy
| | - P. Masi
- Centre for Food Innovation and Development in the Food Industry; University of Naples Federico II; Portici Naples Italy
- Dipartimento di Agraria; Università degli Studi di Napoli Federico II; Portici Naples Italy
| | - M. Aponte
- Dipartimento di Agraria; Università degli Studi di Napoli Federico II; Portici Naples Italy
- Istituto di Scienze dell'Alimentazione; ISA-CNR; Avellino Italy
| |
Collapse
|
41
|
Blaiotta G, Di Capua M, Romano A, Coppola R, Aponte M. Optimization of water curing for the preservation of chestnuts (Castanea sativa Mill.) and evaluation of microbial dynamics during process. Food Microbiol 2014; 42:47-55. [PMID: 24929716 DOI: 10.1016/j.fm.2014.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Chestnuts are very perishable fruits, whose quality may be compromised during postharvest handling. Damage can be caused both by insects and fungi. Water curing, a commonly used postharvest method, is based on soaking fruits in water typically for about one week. Factors that affect effectiveness of water curing have only been explained partially. A decrease in pH, likely imputable to a light fermentation caused by lactic acid bacteria, may inhibit the growth of moulds. In this study a Lactobacillus pentosus strain was selected for its ability to inhibit fungi, and used as a starter culture during water curing. As second goal, a reduction of the environmental impact of the process was evaluated by using water that had been re-cycled from a previous curing treatment. Experiments were performed on pilot as well as on farm scale. In all trials, microbial dynamics were evaluated by means of a polyphasic approach including conventional and molecular-based analyses. According to results, the employment of an adjunct culture appears as a very promising opportunity. Even if no reduction in the duration of the process was achieved, waters exhibited a minor microbial complexity and fruits did not lose the natural lustre after the process.
Collapse
Affiliation(s)
- Giuseppe Blaiotta
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, NA, Italy
| | - Marika Di Capua
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, NA, Italy
| | - Annalisa Romano
- CAISIAL, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, NA, Italy
| | - Raffaele Coppola
- Istituto di Scienze dell'Alimentazione, ISA-CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Maria Aponte
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, NA, Italy; Istituto di Scienze dell'Alimentazione, ISA-CNR, Via Roma, 64, 83100 Avellino, Italy.
| |
Collapse
|