1
|
Mantzourani I, Daoutidou M, Terpou A, Plessas S. Novel Formulations of Sourdough Bread Based on Supplements Containing Chokeberry Juice Fermented by Potentially Probiotic L. paracasei SP5. Foods 2024; 13:4031. [PMID: 39766973 PMCID: PMC11727092 DOI: 10.3390/foods13244031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
The current study focused on sourdough breads produced with various supplements consisting of freeze-dried black chokeberry juice, (i) unfermented and (ii) fermented by Lactiplantibacillus paracasei SP5, aiming to enhance their functionality and nutritional value. Specifically, the impact of these supplements on the quality of sourdough breads was evaluated in terms of their nutritional features, antimicrobial capacity, and sensorial characteristics. Sourdough breads produced with freeze-dried fermented chokeberry juice exhibited elevated concentrations of lactic acid (2.82-2.99 g/kg) and acetic acid (0.93-0.99 g/kg), which significantly prolonged their resistance to mould growth and rope contamination, maintaining freshness for over 13 days. These samples also demonstrated higher antioxidant activity, with DPPH values exceeding 4 μmol TE/g and ABTS values surpassing 218 mg TE/100 g, along with a total phenolic content ranging from 85.9 to 96.3 mg GAE/100 g. Additionally, these samples showed a greater reduction in phytate, an antinutrient, compared to all other samples, including the control. The sensory evaluation conducted with consumer panels indicated that sourdough breads prepared with freeze-dried fermented chokeberry juice achieved the highest ratings in terms of taste and appearance among all tested samples. The findings are highly promising and suggest the potential for commercializing the developed supplements in the production of additive-free sourdough bread with enhanced nutritional value.
Collapse
Affiliation(s)
- Ioanna Mantzourani
- Laboratory of Food Processing, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece; (I.M.)
| | - Maria Daoutidou
- Laboratory of Food Processing, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece; (I.M.)
| | - Antonia Terpou
- Department of Agricultural Development, Agri-Food, and Natural Resources Management, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, Evripos Campus, 34400 Evia, Greece;
| | - Stavros Plessas
- Laboratory of Microbiology, Biotechnology and Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| |
Collapse
|
2
|
György É, Laslo É. Microbiological Quality Assessment of Some Commercially Available Breads. Foods 2024; 13:3271. [PMID: 39456333 PMCID: PMC11507153 DOI: 10.3390/foods13203271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Bread is a staple, energy-rich food for people of all ages, so quality is important to consumers. In our region, most of the commercially available bread, whether packaged or unpackaged, is produced by local bakeries, so monitoring microbial levels and the types of microbes present on bread can help to draw attention to protect the final product. It can also help to ensure the food safety, quality, and shelf life of bread. The freshly baked product is microbiologically sterile. Post-process contamination affects the microbial load of bread. In this study, the microbial load of 30 different commercial bread crumbs and crusts was determined. The different types of bread with different compositions were analyzed for total viable bacteria, Escherichia coli, Staphylococcus aureus, aerobic and anaerobic spore-forming bacteria, and culturable microscopic fungi. The K-means clustering algorithm was used to cluster the different types of bread based on the number of aerobic mesophilic bacteria. Significant differences (p < 0.05) were found in the total viable bacterial count for bread crusts and crumbs. The bacterial count of bread varied between 10.00 ± 0.00-395.00 ± 52.4 CFU/g for bread crusts and 10.00 ± 0.0-310.67 ± 94 CFU/g for bread crumbs. The results of 16S rDNA sequence analysis showed that the most frequently occurring bacterial species belonged to the genus Bacillus, but species of the genus Staphylococcus were also present. Chryseobacterium spp. predominated on multigrain bread, Marinilactobacillus spp. on rustic potato bread, and Staphylococcus warneri on sliced brown potato bread. The results contribute to a better understanding of the microbial dynamics in locally produced breads from the Eastern Carpathians of Transylvania, with the aim of improving food safety, quality control, and consumer protection.
Collapse
Affiliation(s)
- Éva György
- Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 530104 Miercurea Ciuc, Romania;
| | | |
Collapse
|
3
|
Walsh LH, Coakley M, Walsh AM, Crispie F, O’Toole PW, Cotter PD. Analysis of the milk kefir pan-metagenome reveals four community types, core species, and associated metabolic pathways. iScience 2023; 26:108004. [PMID: 37841598 PMCID: PMC10568436 DOI: 10.1016/j.isci.2023.108004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/14/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
A comprehensive metagenomics-based investigation of the microorganisms present within milk kefir communities from across the globe was carried out with a view to defining the milk kefir pan-metagenome, including details relating to core and non-core components. Milk kefir samples, generated by inoculating full fat, pasteurized cow's milk with 64 kefir grains sourced from 25 different countries, were analyzed. We identified core features, including a consistent pattern of domination by representatives from the species Lactobacillus helveticus or the sub-species Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lactococcus lactis subsp. lactis or Lla. cremoris subsp. cremoris in each kefir. Notably, even in kefirs where the lactococci did not dominate, they and 51 associated metabolic pathways were identified across all metagenomes. These insights can contribute to future efforts to create tailored kefir-based microbial communities for different applications and assist regulators and producers to ensure that kefir products have a microbial composition that reflects the artisanal beverage.
Collapse
Affiliation(s)
- Liam H. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Microbiology, University College Cork, Ireland
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Aaron M. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland SFI Research Centre, University College Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland SFI Research Centre, University College Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
4
|
Cabello-Olmo M, Krishnan PG, Araña M, Oneca M, Díaz JV, Barajas M, Rovai M. Development, Analysis, and Sensory Evaluation of Improved Bread Fortified with a Plant-Based Fermented Food Product. Foods 2023; 12:2817. [PMID: 37569086 PMCID: PMC10417715 DOI: 10.3390/foods12152817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
In response to the demand for healthier foods in the current market, this study aimed to develop a new bread product using a fermented food product (FFP), a plant-based product composed of soya flour, alfalfa meal, barley sprouts, and viable microorganisms that showed beneficial effects in previous studies. White bread products prepared with three different substitution levels (5, 10, and 15%) of FFP were evaluated for physical characteristics (loaf peak height, length, width), color indices (lightness, redness/greenness, yellowness/blueness), quality properties (loaf mass, volume, specific volume), protein content, crumb digital image analysis, and sensory characteristics. The results revealed that FFP significantly affected all studied parameters, and in most cases, there was a dose-response effect. FFP supplementation affected the nutritional profile and increased the protein content (p < 0.001). The sensory test indicated that consumer acceptance of the studied sensory attributes differed significantly between groups, and bread with high levels of FFP (10 and 15% FFP) was generally more poorly rated than the control (0%) and 5% FFP for most of the variables studied. Despite this, all groups received acceptable scores (overall liking score ≥ 5) from consumers. The sensory analysis concluded that there is a possible niche in the market for these improved versions of bread products.
Collapse
Affiliation(s)
- Miriam Cabello-Olmo
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Padmanaban G. Krishnan
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Miriam Araña
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Maria Oneca
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Jesús V. Díaz
- Pentabiol S.L., Polígono Noain-Esquiroz s/n, 31191 Pamplona, Spain
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Maristela Rovai
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
5
|
Quality Characteristics of Novel Sourdough Breads Made with Functional Lacticaseibacillus paracasei SP5 and Prebiotic Food Matrices. Foods 2022; 11:3226. [PMCID: PMC9601700 DOI: 10.3390/foods11203226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lacticaseibacillus paracasei SP5, isolated from kefir, was assessed as a starter culture for sourdough bread making in freeze-dried form, both free (BSP5 bread) and immobilised on wheat bran (BIWB) and on a traditional flour/sour milk food, ‘trahanas’ (BITR). Physicochemical characteristics, shelf-life, volatilome, phytic acid, and sensory properties of the breads were evaluated. The BITR breads had higher acidity (9.05 ± 0.14 mL of 0.1 M NaOH/10 g) and organic acid content (g/Kg; 2.90 ± 0.05 lactic, 1.04 ± 0.02 acetic), which justifies the better resistance against mould and rope spoilage (>10 days). The highest number of volatiles (35) and at higher concentration (11.14 μg/g) were also found in BITR, which is in line with the sensory (consumer) evaluation regarding flavour. Finally, higher reduction of phytate (an antinutrient) was observed in all L. paracasei SP5 sourdoughs (83.3–90.7%) compared to the control samples (71.4%). The results support the use of the new strain for good quality sourdough bread.
Collapse
|
6
|
Pacher N, Burtscher J, Johler S, Etter D, Bender D, Fieseler L, Domig KJ. Ropiness in Bread-A Re-Emerging Spoilage Phenomenon. Foods 2022; 11:3021. [PMID: 36230100 PMCID: PMC9564316 DOI: 10.3390/foods11193021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
As bread is a very important staple food, its spoilage threatens global food security. Ropy bread spoilage manifests in sticky and stringy degradation of the crumb, slime formation, discoloration, and an odor reminiscent of rotting fruit. Increasing consumer demand for preservative-free products and global warming may increase the occurrence of ropy spoilage. Bacillus amyloliquefaciens, B. subtilis, B. licheniformis, the B. cereus group, B. pumilus, B. sonorensis, Cytobacillus firmus, Niallia circulans, Paenibacillus polymyxa, and Priestia megaterium were reported to cause ropiness in bread. Process hygiene does not prevent ropy spoilage, as contamination of flour with these Bacillus species is unavoidable due to their occurrence as a part of the endophytic commensal microbiota of wheat and the formation of heat-stable endospores that are not inactivated during processing, baking, or storage. To date, the underlying mechanisms behind ropy bread spoilage remain unclear, high-throughput screening tools to identify rope-forming bacteria are missing, and only a limited number of strategies to reduce rope spoilage were described. This review provides a current overview on (i) routes of entry of Bacillus endospores into bread, (ii) bacterial species implicated in rope spoilage, (iii) factors influencing rope development, and (iv) methods used to assess bacterial rope-forming potential. Finally, we pinpoint key gaps in knowledge and related challenges, as well as future research questions.
Collapse
Affiliation(s)
- Nicola Pacher
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Johanna Burtscher
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | - Danai Etter
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | - Denisse Bender
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Konrad J. Domig
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
7
|
Păcularu-Burada B, Ceoromila (Cantaragiu) AM, Vasile MA, Bahrim GE. Novel insights into different kefir grains usefulness as valuable multiple starter cultures to achieve bioactive gluten-free sourdoughs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Potential of three different lactic acid Bacteria to use as starter culture for production of type II sourdough breadmaking. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Pihurov M, Păcularu-Burada B, Cotârleţ M, Vasile MA, Bahrim GE. Novel Insights for Metabiotics Production by Using Artisanal Probiotic Cultures. Microorganisms 2021; 9:2184. [PMID: 34835310 PMCID: PMC8624174 DOI: 10.3390/microorganisms9112184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023] Open
Abstract
Wild probiotic consortia of microorganisms (bacteria and yeasts) associated in the artisanal cultures' microbiota (milk kefir grains, water kefir grains and kombucha) are considered valuable promoters for metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) production. The beneficial effects of the fermented products obtained with the artisanal cultures on human well-being are described by centuries and the interest for them is continuously increasing. The wild origin and microbial diversity of these above-mentioned consortia give them extraordinary protection capacity against microbiological contaminants in unusual physico-chemical conditions and unique fermentative behaviour. This review summarizes the state of the art for the wild artisanal cultures (milk and water kefir grains, respectively, kombucha-SCOBY), their symbiotic functionality, and the ability to ferment unconventional substrates in order to obtain valuable bioactive compounds with in vitro and in vivo beneficial functional properties. Due to the necessity of the bioactives production and their use as metabiotics in the modern consumer's life, artisanal cultures are the perfect sources able to biosynthesize complex functional metabolites (bioactive peptides, antimicrobials, polysaccharides, enzymes, vitamins, cell wall components). Depending on the purposes of the biotechnological fermentation processes, artisanal cultures can be used as starters on different substrates. Current studies show that the microbial synergy between bacteria-yeast and/or bacteria-offers new perspectives to develop functional products (food, feeds, and ingredients) with a great impact on life quality.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (M.P.); (B.P.-B.); (M.C.); (M.A.V.)
| |
Collapse
|
10
|
Kefir and Its Biological Activities. Foods 2021; 10:foods10061210. [PMID: 34071977 PMCID: PMC8226494 DOI: 10.3390/foods10061210] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/01/2023] Open
Abstract
Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir can be adapted into different substrates which allow the production of new functional beverages to provide product diversification. Being safe and inexpensive, there is an immense global interest in kefir’s nutritional potential. Due to their promising benefits, kefir and kefir-like products have a great prospect for commercialization. This manuscript reviews the therapeutic aspects of kefir to date, and potential applications of kefir products in the health and food industries, along with the limitations. The literature reviewed here demonstrates that there is a growing demand for kefir as a functional food owing to a number of health-promoting properties.
Collapse
|
11
|
Fraberger V, Ammer C, Domig KJ. Functional Properties and Sustainability Improvement of Sourdough Bread by Lactic Acid Bacteria. Microorganisms 2020; 8:microorganisms8121895. [PMID: 33265943 PMCID: PMC7760938 DOI: 10.3390/microorganisms8121895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Preventing food spoilage without the addition of chemical food additives, while increasing functional properties of wheat-based bakery products, is an increasing demand by the consumers and a challenge for the food industry. Within this study, lactic acid bacteria (LAB) isolated from sourdough were screened in vitro for the ability to utilize the typical wheat carbohydrates, for their antimicrobial and functional properties. The dual culture overlay assay revealed varying levels of inhibition against the examined fungi, with Lactiplantibacillus plantarum S4.2 and Lentilactobacillusparabuchneri S2.9 exhibiting the highest suppression against the indicator strains Fusarium graminearum MUCL43764, Aspergillus fumigatus, A. flavus MUCL11945, A. brasiliensis DSM1988, and Penicillium roqueforti DSM1079. Furthermore, the antifungal activity was shown to be attributed mainly to the activity of acids produced by LAB. The antibacillus activity was evaluated by the spot-on-the-lawn method revealing a high inhibition potential of the majority of LAB isolated from sourdough against Bacillus cereus DSM31, B. licheniformis DSM13, B. subtilis LMG7135, and B. subtilis S15.20. Furthermore, evaluating the presence of the glutamate decarboxylase gen in LAB isolates by means of PCR showed a strain dependency of a potential GABA production. Finally, due to improved functional activities, LAB isolated from sourdoughs exhibit promising characteristics for the application as natural preservatives in wheat-based bakery products.
Collapse
|
12
|
Occurrence and enumeration of rope-producing spore forming bacteria in flour and their spoilage potential in different bread formulations. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Sun L, Li X, Zhang Y, Yang W, Ma G, Ma N, Hu Q, Pei F. A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Assessment of the probiotic potential of lactic acid bacteria isolated from kefir grains: evaluation of adhesion and antiproliferative properties in in vitro experimental systems. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01467-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
15
|
Assessment of Ready-to-Use Freeze-dried Immobilized Biocatalysts as Innovative Starter Cultures in Sourdough Bread Making. Foods 2019; 8:foods8010040. [PMID: 30669666 PMCID: PMC6352066 DOI: 10.3390/foods8010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 11/17/2022] Open
Abstract
In the present study the effect of innovative biocatalysts as starter cultures in sourdough bread making was explored. The biocatalysts consisted of Lactobacillus paracasei K5 and Lactobacillus bulgaricus ATCC 11842 (in single and mixed form), immobilized on delignified wheat bran (DWB), and freeze dried without cryoprotectants. The parameters monitored were physicochemical characteristics, mold and rope spoilage appearance, volatile composition, and organoleptic characteristics. Results obtained showed that both biocatalysts exhibit good fermentative activity. However, the best results were achieved when freeze-dried immobilized L. paracasei K5 was applied as a single culture. In particular, the produced bread had a higher acidity (8.67 mL 0.1 N NaOH) and higher organic load (2.90 g/kg lactic acid and 1.11 g/kg acetic acid). This outcome was the main reason why this bread was preserved more regarding mold spoilage (14 days) and rope spoilage (12 days), respectively. In addition, the employment of freeze-dried immobilized L. paracasei K5 led to bread with better aromatic profile in terms of concentrations and number of volatile compounds produced as gas chromatography/mass spectrometry (GC/MS) analysis proved. Finally, no significant differences were observed through sensorial tests. Last but not least, it should be highlighted that the used microorganisms were cultured in cheese whey, minimizing the cost of the proposed biotechnological procedure.
Collapse
|
16
|
Mantzourani I, Plessas S, Odatzidou M, Alexopoulos A, Galanis A, Bezirtzoglou E, Bekatorou A. Effect of a novel Lactobacillus paracasei starter on sourdough bread quality. Food Chem 2018; 271:259-265. [PMID: 30236675 DOI: 10.1016/j.foodchem.2018.07.183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
The novel Lactobacillus paracasei K5 strain, recently isolated from Greek cheese, was evaluated as potential sourdough bread starter. Breads were made using different amounts of L. paracasei sourdoughs as well as traditional sourdough for comparison. Quality characteristics of the breads (acidity and rising) were examined, as well as rope spoilage through macroscopic observations and molecular analysis (PCR-DGGE). The highest acidity levels (3.15 g lactic acid and 1.13 g acetic acid per kg of bread) and better resistance to rope spoilage were observed when bread contained 30% w/w L. paracasei K5 sourdough. Spoilage in the L. paracasei K5 breads was observed at 15-16 days, 5 days later than the control breads. In addition, L. paracasei K5 sourdough improved the bread sensory properties, as reflected by consumer preference and GC/MS analysis of aroma volatiles. Therefore, L. paracasei K5 can be successfully used for sourdough bread making with good quality and extended shelf-life.
Collapse
Affiliation(s)
- Ioanna Mantzourani
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Stavros Plessas
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece.
| | - Maria Odatzidou
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Athanasios Alexopoulos
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26500 Patras, Greece
| |
Collapse
|
17
|
Wu CH, Wang PM, Lin KW. Quality of Semi-dry Fermented Sausage Containing Sugary Kefir Grains. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Pei-Ming Wang
- Department of Food and Nutrition, Providence University No. 200
| | - Kuo-Wei Lin
- Department of Food and Nutrition, Providence University No. 200
| |
Collapse
|
18
|
Valerio F, Conte A, Di Biase M, Lattanzio VM, Lonigro SL, Padalino L, Pontonio E, Lavermicocca P. Formulation of yeast-leavened bread with reduced salt content by using a Lactobacillus plantarum fermentation product. Food Chem 2017; 221:582-589. [DOI: 10.1016/j.foodchem.2016.11.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 02/04/2023]
|
19
|
Abstract
Kefir is a fermented dairy beverage produced by the actions of the microflora encased in the "kefir grain" on the carbohydrates in the milk. Containing many bacterial species already known for their probiotic properties, it has long been popular in Eastern Europe for its purported health benefits, where it is routinely administered to patients in hospitals and recommended for infants and the infirm. It is beginning to gain a foothold in the USA as a healthy probiotic beverage, mostly as an artisanal beverage, home fermented from shared grains, but also recently as a commercial product commanding shelf space in retail establishments. This is similar to the status of yogurts in the 1970s when yogurt was the new healthy product. Scientific studies into these reported benefits are being conducted into these health benefits, many with promising results, though not all of the studies have been conclusive. Our review provides an overview of kefir's structure, microbial profile, production, and probiotic properties. Our review also discusses alternative uses of kefir, kefir grains, and kefiran (the soluble polysaccharide produced by the organisms in kefir grains). Their utility in wound therapy, food additives, leavening agents, and other non-beverage uses is being studied with promising results.
Collapse
|
20
|
Valerio F, Di Biase M, Caputo L, Creanza TM, Ancona N, Visconti A, Lavermicocca P. Effect of Lactobacillus brevis-based bioingredient and bran on microbiological, physico-chemical and textural quality of yeast-leavened bread during storage. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2013.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|