1
|
Ma J, Pan Z, Du H, Chen X, Zhu X, Hao W, Zheng Q, Tang X. Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells. Oncol Lett 2023; 26:327. [PMID: 37415631 PMCID: PMC10320424 DOI: 10.3892/ol.2023.13913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/29/2023] [Indexed: 07/08/2023] Open
Abstract
Gastric cancer is one of the most lethal cancers worldwide. Research has focused on exploring natural medicines to improve the systematic chemotherapy for gastric cancer. Luteolin, a natural flavonoid, possesses anticancer activities. Nevertheless, the mechanism of the anticancer effects of luteolin is still not clear. The present study aimed to verify the inhibitory effect of luteolin on gastric cancer HGC-27, MFC and MKN-45 cells and to explore the underlying mechanism. A Cell Counting Kit-8 cell viability assay, flow cytometry, western blot, an ATP content assay and an enzyme activity testing assay were used. Luteolin inhibited the proliferation of gastric cancer HGC-27, MFC and MKN-45 cells. Further, it impaired mitochondrial integrity and function by destroying the mitochondrial membrane potential, downregulating the activities of mitochondrial electron transport chain complexes (mainly complexes I, III and V), and unbalancing the expression of B cell lymphoma-2 family member proteins, eventually leading to apoptosis of gastric cancer HGC-27, MFC and MKN-45 cells. The intrinsic apoptosis pathway was involved in luteolin's anti-gastric cancer effects. Furthermore, mitochondria were the main target in luteolin-induced gastric cancer apoptosis. The present study may provide a theoretical basis for the research on the effect of luteolin on the mitochondrial metabolism in cancer cells, and pave the way for its practical application in the future.
Collapse
Affiliation(s)
- Jun Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Hongchao Du
- Department of General Surgery, Binzhou Medical University Affiliated Yantai Yeda Hospital, Yantai, Shandong 265599, P.R. China
| | - Xiaojie Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuejie Zhu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjin Hao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, Xinjiang 832099, P.R. China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
2
|
Yu S, Chen Y, Yang Y, Yao Y, Song H. Nitrogen-doped graphene-poly(hydroxymethylated-3,4-ethylenedioxythiophene) nanocomposite electrochemical sensor for ultrasensitive determination of luteolin. RSC Adv 2022; 12:15517-15525. [PMID: 35685175 PMCID: PMC9125232 DOI: 10.1039/d2ra01669a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
An ultrasensitive luteolin electrochemical sensor was constructed by co-electropolymerization of nitrogen-doped graphene (N-GR) and hydroxymethylated-3,4-ethylenedioxythiophene (EDOT-MeOH) using cyclic voltammetry (CV). Because of the synergistic effects of the large surface area, superior electrical conductivity, and large amount of chemically active sites of N-GR together with the satisfactory water solubility and high conductivity of poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH), the N-GR-PEDOT-MeOH nanocomposite sensor exhibited high electrochemical sensitivity towards luteolin with a wide linear range of 0.005-10.06 μM and low detection limit of 0.05 nM. Satisfactory reproducibility, selectivity, and stability were exhibited by this electrochemical sensor. Additionally, the proposed sensor was employed for trace-level analysis of luteolin in actual samples of herbal medicines (thyme (Thymus vulgaris L.), honeysuckle (Lonicera japonica Thunb.), and Tibetan Duyiwei (Lamiophlomis rotata (Benth.) Kudo)) with satisfactory results.
Collapse
Affiliation(s)
- Shanshan Yu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 PR China
| | - Yining Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 PR China
| | - Ying Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 PR China
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 PR China
| | - Haijun Song
- College of Mechanical and Electrical Engineering, Jiaxing University Jiaxing 314001 PR China
| |
Collapse
|
3
|
Li F, Wang M, Zhou J, Yang M, Wang T. Nanocomposites of boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymers as a novel desorption/ionization matrix for the capture and direct detection of cis-diol-flavonoid compounds coupled with MALDI-TOF-MS. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128055. [PMID: 35236020 DOI: 10.1016/j.jhazmat.2021.128055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Novel boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymer (Fe3O4@MWCNTs@ε-PL@BA) nanocomposites were fabricated and applied as the desorption/ionization matrix for the MALDI-TOF-MS determination of low molecular weight flavonoids. The prepared nanocomposite was systematically characterized by various techniques. Compared to the traditional organic matrix, the proposed Fe3O4@MWCNTs@ε-PL@BA matrix has excellent ionization efficiency and low-background noise interference due to the MWCNTs unique electron-phonon interaction and the high introduction density of boronic acid functional groups. Good sensitivity and ultra-high salt tolerance of the Fe3O4@MWCNTs@ε-PL@BA-assisted MALDI-TOF-MS were permitted for the determination and quantification of flavonoids in actual samples. Noticeably, the limits of detection (LODs) for the target flavonoids were in the range 17-33 nM. The relative standard deviations (RSDs) of spot-to-spot and sample-to-sample (n = 10) were ≤ 9.8% and ≤ 10.1%, respectively. Furthermore, the wide linear ranges (0.1 - 500 µg/mL) and satisfactory calibration plot coefficients (R2 > 0.99) of flavonoids were achieved by MALDI-TOF-MS with the Fe3O4@MWCNTs@ε-PL@BA matrix. Good recoveries (92-105.5%) were achieved for the target flavonoids in practical food samples. Hence, the prepared Fe3O4@MWCNTs@ε-PL@BA nanocomposites have applications in the selective and efficient capture of target flavonoids active biomolecules coupled with MALDI-TOF-MS determination in actual samples.
Collapse
Affiliation(s)
- FuKai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - MengRui Yang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - TongTong Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| |
Collapse
|
4
|
Liu W, Yang X, Li M, Gui QW, Jiang H, Li Y, Shen Q, Xia J, Liu X. Sensitive detection of luteolin in peanut shell based on titanium carbide/carbon nanotube composite modified screen-printed electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Carlini GCG, Roschel GG, Ferrari RA, Alencar SM, Ota HC, da Silveira TFF, Castro IA. Chemical characterization of Echium plantagineum seed oil obtained by three methods of extraction. J Food Sci 2021; 86:5307-5317. [PMID: 34841517 DOI: 10.1111/1750-3841.15972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Echium seed oil has been considered an important alternative source of omega 3 fatty acids (n-3 FA) for human consumption. Considering the oxidative instability of n-3 FA richer oils, the objective of this study was to determine the chemical and sensory parameters of the oil obtained from Echium plantagineum seeds obtained by three extraction methods (hydraulic press: HYD; continuous screw press: PRESS; and solvent technique: SOLV). Stearidonic acid (C18:4, n3), the most important n-3 FA present in the oil, changed from 12.5% to 12.7%. Regarding the minor compounds, PRESS sample showed the highest concentration of gamma-tocopherol (782.24 mg/kg oil), while SOLV samples presented the highest amount of β-sitosterol (73.46 mg/100 g) with no difference of campesterol concentration (159.56 mg/100 g) among the samples. Higher values of total phenolics (19.65 mg GAE/kg oil) and β-carotene (34.83 mg/kg oil) were also found in the SOLV samples, suggesting the influence of hexane in the extraction of these bioactive compounds. High resolution mass spectrometry identified caffeic acid and its derivatives as the main phenolic compounds present in the echium oil. PRESS sample showed the best oxidative stability as measured by PV (0.61 mmol/kg oil) and malondialdehyde (173.13 µmol), probably due to faster time of processing compared to HYD and SOLV samples. Our data showed that the extraction method changed the chemical composition of the minor compounds in the echium oil, but these alterations did not reduce its nutritional quality or sensory acceptability. PRACTICAL APPLICATION: Echium oil represents a great potential source of omega 3 fatty acids, but there is not enough information about its oxidative stability and chemical composition, especially toward minor compounds. Our study characterizes echium oil composition obtained from three extraction methods, contributing to amplify the technical information about this important alternative oil for human consumption.
Collapse
Affiliation(s)
- Giovanna Calixto Garcia Carlini
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Grassmann Roschel
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Severino Mathias Alencar
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Helton Cherubim Ota
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Li F, Wang M, Zhou J, Yang M, Wang T. Multifunctional boronic acid-functionalized magnetic nanohybrid: An efficient and selective adsorbent of cis-diol-flavonoids. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Soft template assisted hydrothermal synthesis of phosphorus doped porous carbon spheres with tunable microstructure as electrochemical nanozyme sensor for distinguishable detection of two flavonoids coupled with derivative voltammetry. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Niu X, Huang Y, Zhang W, Yan L, Wang L, Li Z, Sun W. Synthesis of gold nanoflakes decorated biomass-derived porous carbon and its application in electrochemical sensing of luteolin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Square wave voltammetric quantitative determination of flavonoid luteolin in peanut hulls and Perilla based on Au NPs loaded boron nitride nanosheets. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Adam V, Vaculovicova M. CE and nanomaterials - Part II: Nanomaterials in CE. Electrophoresis 2017; 38:2405-2430. [DOI: 10.1002/elps.201700098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
11
|
Gamat SN, Fotouhi L, Talebpour Z. The application of electrochemical detection in capillary electrophoresis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-1023-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Fabrication of a carbon nanotube-polyurethane composite electrode by in situ polyaddition for use in amperometric detection in capillary electrophoresis. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1900-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Zhao M, Zhou MF, Feng H, Cong XX, Wang XL. Determination of Tryptophan, Glutathione, and Uric Acid in Human Whole Blood Extract by Capillary Electrophoresis with a One-Step Electrochemically Reduced Graphene Oxide Modified Microelectrode. Chromatographia 2016. [DOI: 10.1007/s10337-016-3115-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Emerging Nanomaterials for Analytical Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Wu CH, Chen MJ, Shieh TM, Wang KL, Wu YT, Hsia SM, Chiang W. Potential benefits of adlay on hyperandrogenism in human chorionic gonadotropin-treated theca cells and a rodent model of polycystic ovary syndrome. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
16
|
Martín A, López MÁ, González MC, Escarpa A. Multidimensional carbon allotropes as electrochemical detectors in capillary and microchip electrophoresis. Electrophoresis 2014; 36:179-94. [DOI: 10.1002/elps.201400328] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Aída Martín
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| |
Collapse
|
17
|
Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples. Microchem J 2014. [DOI: 10.1016/j.microc.2014.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Abjameh R, Moradi O, Amani J. The study of synthesis and functionalized single-walled carbon nanotubes with amide group. INTERNATIONAL NANO LETTERS 2014. [DOI: 10.1007/s40089-014-0097-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|