1
|
Gupta RK, Pipliya S, Karunanithi S, Eswaran U GM, Kumar S, Mandliya S, Srivastav PP, Suthar T, Shaikh AM, Harsányi E, Kovács B. Migration of Chemical Compounds from Packaging Materials into Packaged Foods: Interaction, Mechanism, Assessment, and Regulations. Foods 2024; 13:3125. [PMID: 39410160 PMCID: PMC11475518 DOI: 10.3390/foods13193125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The migration of chemical compounds from packaging polymers to food presents a multifaceted challenge with implications for food safety and public health. This review explores the interaction between packaging materials and food products, focusing on permeation, migration, and sorption processes. The different migration mechanisms of contact migration, gas phase migration, penetration migration, set-off migration, and condensation/distillation migration have been discussed comprehensively. The major migrating compounds are plasticizers, nanoparticles, antioxidants, light stabilizers, thermal stabilizers, monomers, oligomers, printing inks, and adhesives, posing potential health risks due to their association with endocrine disruption and carcinogenic effects. Advanced analytical methods help in the monitoring of migrated compounds, facilitating compliance with regulatory standards. Regulatory agencies enforce guidelines to limit migration, prompting the development of barrier coatings and safer packaging alternatives. Furthermore, there is a need to decipher the migration mechanism for mitigating it along with advancements in analytical techniques for monitoring the migration of compounds.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sunil Pipliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sangeetha Karunanithi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Gnana Moorthy Eswaran U
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sitesh Kumar
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Shubham Mandliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | | | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Food Science & Nutrition, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
- World Food Forum, I-00100 Rome, Italy
| | - Endre Harsányi
- Agricultural Research Institutes and Academic Farming (AKIT), Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Food Science & Nutrition, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Gui H, Ma W, Cao Y, Chao H, Fan M, Dong Q, Li L. Sustained release, antimicrobial, and antioxidant properties of modified porous starch-based biodegradable polylactic acid/polybutylene adipate-co-terephthalate/thermoplastic starch active packaging film. Int J Biol Macromol 2024; 267:131657. [PMID: 38636753 DOI: 10.1016/j.ijbiomac.2024.131657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Porous starch (PS) is a modified starch with commendable biodegradable and adsorption properties. PS exhibits poor thermal stability, and the aqueous solution casting method is conventionally used for PS-activated packaging films. This approach limits the large-scale production of films and makes it difficult to play the functions of porous pores. In this study, PS was prepared by enzymatic digestion combined with freeze-drying and adsorbed with clove essential oil (CEO) after cross-linking with sodium trimetaphosphate. Subsequently, a novel PLA/PBAT/TPS/ScPS-CEO sustained release active packaging film was prepared by blending PLA, PBAT, TPS, and ScPS-CEO using industrial melt extrusion. Compared with PS, ScPS effectively slowed down the release of CEO from the film, with the maximum release of active substances at equilibrium increasing by approximately 100 %, which significantly enhanced the persistence of the antimicrobial and antioxidant properties. The polylactic acid/poly (butylene adipate-co-terephthalate)/thermoplastic starch/trimetaphosphate-crosslinked porous starch incorporated with clove essential oil (PLA/PBAT/TPS/ScPS-CEO) film could reduce the proteolysis, lipid oxidation and microbial growth of salmon, extending its shelf life by approximately 100 % at 4 °C. These results indicate that the ScPS can be used in fresh packaging material in practical applications.
Collapse
Affiliation(s)
- Hang Gui
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yichen Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hui Chao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
3
|
Sateriale D, Forgione G, De Cristofaro GA, Facchiano S, Boscaino F, Pagliuca C, Colicchio R, Salvatore P, Paolucci M, Pagliarulo C. Towards Green Strategies of Food Security: Antibacterial Synergy of Essential Oils from Thymus vulgaris and Syzygium aromaticum to Inhibit Escherichia coli and Staphylococcus aureus Pathogenic Food Isolates. Microorganisms 2022; 10:microorganisms10122446. [PMID: 36557699 PMCID: PMC9780947 DOI: 10.3390/microorganisms10122446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Foodborne diseases continue to represent an important public health issue. The control of food spoilage and pathogenic microorganisms is achieved mainly by synthetic chemicals, unfortunately associated to several undesirable aspects. The growing requirement for new and safe alternative strategies has resulted in the research of agents from natural sources with antimicrobial properties, such as essential oils (EOs). This study's purpose was to define the antibacterial profile of thyme (Thymus vulgaris) and cloves (Syzygium aromaticum) essential oils against both Gram-positive and Gram-negative important foodborne pathogenic bacteria. Gas chromatography mass spectrometry analysis was performed for EOs' chemical composition. Qualitative in vitro antimicrobial assays (i.e., agar well diffusion method and disk-volatilization method) allowed for verification of the efficacy of EOs, used individually and in binary combination and both in liquid and vapor phase, against Staphylococcus aureus and Escherichia coli food isolates. Minimal inhibitory concentrations and minimal bactericidal concentration values have been used to quantitatively measure the antibacterial activity of EOs, while the fractional inhibitory concentration index has been considered as a predictor of in vitro antibacterial synergistic effects. The microbiological tests suggest that thyme and cloves EOs, rich in bioactive compounds, are able to inhibit the growth of tested foodborne bacteria, especially in vapor phase, also with synergistic effects. Results provide evidence to consider the tested essential oils as promising sources for development of new, broad-spectrum, green food preservatives.
Collapse
Affiliation(s)
- Daniela Sateriale
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Giuseppina Forgione
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | | | - Serena Facchiano
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Floriana Boscaino
- Institute of Food Science, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
- Correspondence: ; Tel.: +39-0824-305141
| |
Collapse
|
4
|
Hazer B, Ashby RD. Synthesis Of Poly Vinyl Chloride/Chlorinated Polypropylene-Active Natural Substance Derivatives For Potential Packaging Materials Application. Tannic Acid, Menthol And Lipoic Acid. Food Chem 2022; 403:134475. [DOI: 10.1016/j.foodchem.2022.134475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
|
5
|
Redfearn HN, Goddard JM. Antioxidant and dissociation behavior of polypropylene‐
graft
‐maleic anhydride. J Appl Polym Sci 2022. [DOI: 10.1002/app.52764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science Cornell University Ithaca New York USA
| |
Collapse
|
6
|
Azari A, Ahari H, Anvar AA. Increased shelf life of Oncorhynchus mykiss (Rainbow trout) through Cu-Clay nanocomposites. Food Sci Biotechnol 2022; 31:295-309. [PMID: 35273820 PMCID: PMC8885968 DOI: 10.1007/s10068-022-01031-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial growth is widely responsible for shortened shelf life of cold water-living fish products. So, it seems that current chemical-based food packaging has no acceptable efficacy, and food industrialists tend to the usage of more novel approaches like active food packaging. Among them, there is a great research interest in nanotechnology-emerging approaches. This study aimed to investigate the anti-microbial efficacies of Polyethylene/CuNP/nanoclay nanocomposites to enhance the shelf life and physiochemical features of rainbow trout. Three main nanocomposites with various concentrations of Cu and clay nanoparticles were examined. SEM, XRD, and EDX (as physiochemical analysis), disk diffusion (as antimicrobial assays), total volatile nitrogen (TVB-N), and peroxide value (PV) (as biochemical parameters) were measured. Based on the results, nanocomposites could reduce the microorganism growth rate by reducing the number of colonies (33.3%), inhibitory activities against both gram-positive (8 mm) and gram-negative bacteria (10 mm), maintenance of TVB-N (42% reduction), and PV (44% reduction) below the standard range. To sum up, these new nanocomposites can be a good candidate to enhance the shelf life of Rainbow Trout. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01031-0.
Collapse
Affiliation(s)
- Armin Azari
- grid.411463.50000 0001 0706 2472Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- grid.411463.50000 0001 0706 2472Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Ali Anvar
- grid.411463.50000 0001 0706 2472Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Hazer B, Ashby RD. Synthesis of a novel tannic acid-functionalized polypropylene as antioxidant active-packaging materials. Food Chem 2020; 344:128644. [PMID: 33246682 DOI: 10.1016/j.foodchem.2020.128644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
This work focuses on the synthesis of novel tannin-functionalized polypropylene copolymers that are designed to inhibit the oxidation of vegetable oils for potential use as packaging materials. An empty glass Petri dish (control), a chlorinated polypropylene-coated glass Petri dish (control) and a series of the tannin-functionalized polypropylene coated glass Petri dishes overlaid with linseed oil were exposed to air and additional white light. Oligomerization of the oxidized linseed oil was assessed by measuring the flow properties of the exposed oil using a viscometer. The antioxidant effect of the tannic acid grafted polypropylene copolymers (PP-Tann) retarded oligomerization of the linseed oil. The molar mass of the linoleic acid overlaid onto the PP-Tann films was the lowest among the tested samples after each time period indicating that tannin-grafted polypropylene may be a promising packaging material for vegetable oils.
Collapse
Affiliation(s)
- Baki Hazer
- Kapadokya University, Department of Aircraft Airflame Engine Maintenance, Mustafapaşa, Kasabası 50420, Ürgüp, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey.
| | - Richard D Ashby
- USDA ARS, East. Reg. Res. Ctr, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
8
|
Guo Y, Cai Z, Xie Y, Ma A, Zhang H, Rao P, Wang Q. Synthesis, physicochemical properties, and health aspects of structured lipids: A review. Compr Rev Food Sci Food Saf 2020; 19:759-800. [PMID: 33325163 DOI: 10.1111/1541-4337.12537] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Structured lipids (SLs) refer to a new type of functional lipids obtained by chemically, enzymatically, or genetically modifying the composition and/or distribution of fatty acids in the glycerol backbone. Due to the unique physicochemical characteristics and health benefits of SLs (for example, calorie reduction, immune function improvement, and reduction in serum triacylglycerols), there is increasing interest in the research and application of novel SLs in the food industry. The chemical structures and molecular architectures of SLs define mainly their physicochemical properties and nutritional values, which are also affected by the processing conditions. In this regard, this holistic review provides coverage of the latest developments and applications of SLs in terms of synthesis strategies, physicochemical properties, health aspects, and potential food applications. Enzymatic synthesis of SLs particularly with immobilized lipases is presented with a short introduction to the genetic engineering approach. Some physical features such as solid fat content, crystallization and melting behavior, rheology and interfacial properties, as well as oxidative stability are discussed as influenced by chemical structures and processing conditions. Health-related considerations of SLs including their metabolic characteristics, biopolymer-based lipid digestion modulation, and oleogelation of liquid oils are also explored. Finally, potential food applications of SLs are shortly introduced. Major challenges and future trends in the industrial production of SLs, physicochemical properties, and digestion behavior of SLs in complex food systems, as well as further exploration of SL-based oleogels and their food application are also discussed.
Collapse
Affiliation(s)
- Yalong Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanping Xie
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Aiqin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, P. R. China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
9
|
Herskovitz JE, Worobo RW, Goddard JM. The Role of Solid Support Bound Metal Chelators on System-Dependent Synergy and Antagonism with Nisin. J Food Sci 2019; 84:580-589. [PMID: 30714624 DOI: 10.1111/1750-3841.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/01/2022]
Abstract
Active packaging can enhance the performance of natural antimicrobials in controlling food spoilage and waste, while addressing consumer demands for cleaner labels. Yet, synergies are system dependent, with some conditions counterintuitively promoting antagonistic effects. In particular, metal chelators can improve performance of certain natural antimicrobials and have been incorporated in nonmigratory metal chelating active packaging technologies. However, the influence of chelating ligand chemistry on antimicrobial efficacy has not been investigated in microbial spoilage models. The effect of three commercial chelating resins on the growth of Alicyclobacillus acidoterrestris ATCC 49025, a thermoduric acidophilic spore-former, in growth media and apple juice was investigated. Dowex MAC-3, Chelex 100, and Lewatit TP260 were used as models for metal chelating active packaging containing carboxylic acid (CA), iminodiacetic acid (IDA), and aminomethylphosphonic acid (AMPA) ligands. Diameters (CA = 472.4 ± 117.2 μm, IDA = 132.93 ± 26.71 μm, and AMPA = 498.3 ± 29.24 μm), dissociation kinetics (CA = 6.44 ± 0.109, IDA = -0.977 ± 9.94, AMPA = 7.43 ± 0.193), and metal chelating capacities (CA = 1.16 × 10-4 mol/g, IDA = 1.52 × 10-3 mol/g, and AMPA = 4.67 × 10-4 mol/g) were used to distinguish differences in antimicrobial efficacies. Growth of A. acidoterrestris in acidified Potato Dextrose Broth over 24 hr with chelating resins indicated early death phase for CA and IDA resins and bactericidal for AMPA resin. However, viability in commercial apple juice with the inclusion of nisin and chelating resins was variable, with IDA resin significantly (P < 0.05) increasing viability while the effect of CA and AMPA resins remained elusive. This work emphasizes the importance of biological repeatability and correct statistical modeling in identifying conditions under which the antimicrobial intervention of nisin in real food systems, such as acidic beverages and juices, are synergistic or antagonistic. PRACTICAL APPLICATION: New technologies to control microbial food spoilage and waste need to be explored to address consumers on-going demands for reducing additive use. Solid support bound metal chelators can both promote and control microbial growth when used in conjunction with nisin, a natural antimicrobial. This work explores how system conditions can render a given technology either synergistic or antagonistic, and highlights the importance of sufficient biological replicates in experimental design.
Collapse
Affiliation(s)
| | - Randy W Worobo
- Dept. of Food Science, Cornell Univ., Ithaca, NY, 14853, U.S.A
| | - Julie M Goddard
- Dept. of Food Science, Cornell Univ., Ithaca, NY, 14853, U.S.A
| |
Collapse
|
10
|
Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC, Nilsen-Nygaard J, Pettersen MK, Freire CS. A concise guide to active agents for active food packaging. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.006] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Vasile C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1834. [PMID: 30261658 PMCID: PMC6213312 DOI: 10.3390/ma11101834] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/10/2018] [Accepted: 09/22/2018] [Indexed: 01/20/2023]
Abstract
Special properties of the polymeric nanomaterials (nanoscale size, large surface area to mass ratio and high reactivity individualize them in food packaging materials. They can be processed in precisely engineered materials with multifunctional and bioactive activity. This review offers a general view on polymeric nanocomposites and nanocoatings including classification, preparation methods, properties and short methodology of characterization, applications, selected types of them used in food packaging field and their antimicrobial, antioxidant, biological, biocatalyst and so forth, functions.
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry (PPIMC), Romanian Academy, 41A Gr. Ghica Alley, RO 700487 Iasi, Romania.
| |
Collapse
|
12
|
Lin Z, Goddard J. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging. J Food Sci 2018; 83:367-376. [PMID: 29377118 DOI: 10.1111/1750-3841.14051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/29/2022]
Abstract
Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. PRACTICAL APPLICATION To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal of the synthetic additive, ethylenediamine tetraacetic acid. The new synthesis technique improves the throughput of metal-chelating active packaging coatings, enabling potential roll-to-roll fabrication of the materials for antioxidant food packaging applications.
Collapse
Affiliation(s)
- Zhuangsheng Lin
- Authors are with Dept. of Food Science, Cornell Univ., Ithaca, N.Y. 14853, U.S.A
| | - Julie Goddard
- Authors are with Dept. of Food Science, Cornell Univ., Ithaca, N.Y. 14853, U.S.A
| |
Collapse
|
13
|
Contreras CB, Toselli R, Strumia MC. Atom Transfer Radical Polymerization Functionalization on Polypropylene Films for Immobilizing Active Compounds. Aust J Chem 2018. [DOI: 10.1071/ch18140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work proposes the surface chemical modification of polypropylene films (PP) by atom transfer radical polymerization (ATRP) using glycidyl methacrylate (GMA) as the graft monomer. At a later stage, the epoxy groups of PP-g-PGMA were used for covalent binding of glucose oxidase (GOD) to obtain an active material (PP-g-PGMA-GOD) with 9.38 ± 0.06 mg cm−2 of enzyme bonded on the surface of PP. Preliminary microbiological studies have shown that this methodology of covalent binding of the enzyme onto the PP surface allowed its activity to be maintained. Therefore, this advantage would give to PP-g-PGMA-GOD films a potential use as an active packaging material if further specific studies on their antimicrobial properties can be verified.
Collapse
|
14
|
|
15
|
Lin Z, Roman MJ, Decker EA, Goddard JM. Synthesis of Iminodiacetate Functionalized Polypropylene Films and Their Efficacy as Antioxidant Active-Packaging Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4606-4617. [PMID: 27243793 DOI: 10.1021/acs.jafc.6b01128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The introduction of metal-chelating ligands to the food-contact surface of packaging materials may enable the removal of synthetic chelators (e.g., ethylenediamine tetra-acetic acid (EDTA)) from food products. In this study, the metal-chelating ligand iminodiacetate (IDA) was covalently grafted onto polypropylene surfaces to produce metal-chelating active-packaging films. The resulting films were able to chelate 138.1 ± 26 and 210.0 ± 28 nmol/cm(2) Fe(3+) and Cu(2+) ions, respectively, under acidic conditions (pH 3.0). The films demonstrated potent antioxidant efficacy in two model food systems. In an emulsified-oil system, the chelating materials extended the lag phase of both lipid hydroperoxide and hexanal formation from 5 to 25 days and were as effective as EDTA. The degradation half-life of ascorbic acid in an aqueous solution was extended from 5 to 14 days. This work demonstrates the potential application of surface-grafted chelating IDA ligands as effective antioxidant active food-packaging materials.
Collapse
Affiliation(s)
- Zhuangsheng Lin
- Department of Food Science, University of Massachusetts, Chenoweth Lab , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Maxine J Roman
- Department of Food Science, University of Massachusetts, Chenoweth Lab , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Lab , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
- Bioactive Natural Products Research Group, Department of Biochemistry, Faculty of Science, King Abdulaziz University , P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Julie M Goddard
- Department of Food Science, University of Massachusetts, Chenoweth Lab , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Ogiwara Y, Roman MJ, Decker EA, Goddard JM. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators. Food Chem 2016; 196:842-7. [DOI: 10.1016/j.foodchem.2015.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/16/2022]
|
17
|
Abstract
Active food packaging involves the packaging of foods with materials that provide an enhanced functionality, such as antimicrobial, antioxidant or biocatalytic functions. This can be achieved through the incorporation of active compounds into the matrix of the commonly used packaging materials, or by the application of coatings with the corresponding functionality through surface modification. The latter option offers the advantage of preserving the packaging materials’ bulk properties nearly intact. Herein, different coating technologies like embedding for controlled release, immobilization, layer-by-layer deposition, and photografting are explained and their potential application for active food packaging is explored and discussed.
Collapse
|
18
|
Tian F, Decker EA, Goddard JM. Controlling lipid oxidation via a biomimetic iron chelating active packaging material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12397-12404. [PMID: 24313833 DOI: 10.1021/jf4041832] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ζ potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation.
Collapse
Affiliation(s)
- Fang Tian
- Department of Food Science, University of Massachusetts , Chenoweth Lab, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|