1
|
Vicentini‐Polette CM, Yamada BS, Ramos PR, da Silva MG, de Oliveira AL. High Pressure Extraction as a Green Alternative to the Conventional Sunflower Oil ( Helianthus annuus) Production Process - Extraction with Pressurized Ethanol in an Intermittent Process and with Supercritical Fluid. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300335. [PMID: 39545253 PMCID: PMC11557510 DOI: 10.1002/gch2.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/09/2024] [Indexed: 11/17/2024]
Abstract
This research explores green-technology alternatives to extract vegetable oils as alternatives to hexane, a non-renewable solvent, focussing on sunflower oil. It compares pressurized liquid extraction (PLE) with ethanol and supercritical fluid extraction (SFE) with CO2. Both processes aim to maximize oil yield, tocopherol content (α, β, γ, and δ), fatty acid profile (FA), and triacylglycerol (TAG) composition. Results show that SFE at 32 MPa achieves an 87.58% oil recovery, while PLE at 84 °C achieves 93.93%. PLE with ethanol extracts polar minority compounds along with the oil due to its higher temperature, favoring extraction. The total tocopherol content is 91.17 mg/100 g of oil in optimized SFE conditions, with α-tocopherol extraction influenced by temperature, γ and δ-tocopherol by pressure. PLE yields 83.16 mg/100 g of oil in tocopherols influenced less by process variables. The fatty acid (FA) profile do not vary in the oils obtained from different processes or based on the variables within each process, with linoleic and oleic acids being the most abundant. Similarly, triacylglycerols (TAGs) C54:5 and C54:6 are predominant. The optimization of SFE and PLE processes indicates a strong potential for using green solvents in the extraction of tocopherol-rich sunflower oil.
Collapse
Affiliation(s)
- Carolina Medeiros Vicentini‐Polette
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Beatriz Satie Yamada
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Paulo Rodolfo Ramos
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Marta Gomes da Silva
- Instituto de Tecnologia de Alimentos (ITAL)Centro de Ciência e Qualidade de AlimentosAv. Brasil, 2880CampinasSP13070–178Brazil
| | - Alessandra Lopes de Oliveira
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| |
Collapse
|
2
|
Daryani D, Pegua K, Aryaa SS. Review of plant-based milk analogue: its preparation, nutritional, physicochemical, and organoleptic properties. Food Sci Biotechnol 2024; 33:1059-1073. [PMID: 38440691 PMCID: PMC10909032 DOI: 10.1007/s10068-023-01482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
In recent years, the market demand for plant-based milk analogues has been rising because of health concerns with bovine milk, like lactose intolerance and hypercholesteremia. Another reason is the lifestyle changes like adopting veganism. This review aims to offer a layout of the manufacturing process and discuss the different properties of plant-based milk analogues. The health benefits offered by the plant-based milk analogues and measures taken to eliminate the existing limitations are also discussed. Sensory profile and stability of plant-based milk analogues which add to the quality of the product were also taken into account and reviewed. The current review's objective is to present a comprehensive, scientifically comparable overview of the preparation procedures, nutritional content, and sensory characteristics of plant-based milk analogues. This is done while keeping in mind the potential of plant-based milk substitutes and associated challenges.
Collapse
Affiliation(s)
- Drushti Daryani
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parikh Marg, Matunga, Mumbai, Maharashtra 400 019 India
| | - Kakoli Pegua
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parikh Marg, Matunga, Mumbai, Maharashtra 400 019 India
| | - Shalini S. Aryaa
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parikh Marg, Matunga, Mumbai, Maharashtra 400 019 India
| |
Collapse
|
3
|
Sherman IM, Mounika A, Srikanth D, Shanmugam A, Ashokkumar M. Leveraging new opportunities and advances in high-pressure homogenization to design non-dairy foods. Compr Rev Food Sci Food Saf 2024; 23:e13282. [PMID: 38284573 DOI: 10.1111/1541-4337.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/15/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024]
Abstract
High-pressure homogenization (HPH) and ultrahigh-pressure homogenization (UHPH) are emerging food processing techniques for stabilizing emulsions and food components under the pressure range from 60 to 400 MPa. Apart from this, they also support increasing nutritional profile, food preservation, and functionality enhancement. Even though the food undergoes the shortest processing operation, the treatment leads to modification of physical, chemical, and techno-functional properties, in addition to the formation of micro-sized particles. This study focuses on recent advances in using HPH/UHPH on plant-based milk sources such as soybeans, almonds, hazelnuts, and peanuts. Overall, this systematic review provides an in-depth analysis of the principles of HPH/UHPH, the mechanism of action, and their applications in other nondairy areas such as fruits and vegetables, meat, fish, and marine species. This work also deciphers the role of HPH/UHPH in modifying food components, their functional quality enhancement, and their provision of oxidative resistance to many foods. HPH is not only perceived as a technique for size reduction and homogenization; however, it does various functions like microbial inactivation, improvement of rheologies like texture and consistency, decreasing of lipid oxidation, and making positive modifications to proteins such as changes to the secondary structure and tertiary structure thereby enhancing the emulsifying properties, hydrophobicity of proteins, and other associated functional properties in many nondairy sources at pressures of 100-300 MPa. Thus, HPH is an emerging technique with a high throughput and commercialization value in food industries.
Collapse
Affiliation(s)
- Irene Mary Sherman
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Davanam Srikanth
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Lo Turco V, Sgrò B, Albergamo A, Nava V, Rando R, Potortì AG, Di Bella G. Assessment of the Accuracy of Nutrition Label and Chemical Composition of Plant-Based Milks Available on the Italian Market. Foods 2023; 12:3207. [PMID: 37685140 PMCID: PMC10486939 DOI: 10.3390/foods12173207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Growing health, environmental, and ethical concerns have encouraged interest in plant-based milks (PBMs), but it remains questionable whether the nutrition labeling of these products is adequately reliable for consumers, and whether nutritional standards can be defined for a given PBM type. On this basis, cereal, pseudocereal, nut, and legume PBMs available on the Italian market were analyzed in order to check the accuracy of nutritional labels on packages and generate new or updated compositional data. Most labels provided inaccurate information, especially with respect to the declared energy, fat, and saturated fat. Cereal- and pseudocereal-based PBMs were generally characterized by high MUFA (34.04-59.35%) and PUFA (21.61-52.27%). Almond, soy, rice, and hazelnut beverages displayed the highest levels of total tocopherols (11.29-13.68 mg/L), while buckwheat and spelt PBMs had the highest total polyphenol content (34.25-52.27 mg GAE/100 mL). Major and trace elements greatly varied among samples, being more abundant in buckwheat and coconut-based drinks. A PCA confirmed that nutritional standards cannot be unequivocally established for a given PBM, and indicated that, among the investigated variables, inorganic elements had more weight in the sample differentiation. Overall, to reliably guide consumers in their dietary choices, there is a need for greater accuracy in the development of nutrition labels for PBMs, as well as greater effort in assessing the nutritional quality of the ever-increasing variety of products available on the market.
Collapse
Affiliation(s)
- Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Benedetta Sgrò
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Vincenzo Nava
- Department of Veterinary Science, University of Messina, Viale Annunziata, 98168 Messina, Italy;
| | - Rossana Rando
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (B.S.); (R.R.); (A.G.P.); (G.D.B.)
| |
Collapse
|
5
|
Vasquez-Rojas WV, Martín D, Fornari T, Cano MP. Brazil Nut ( Bertholletia excelsa) Beverage Processed by High-Pressure Homogenization: Changes in Main Components and Antioxidant Capacity during Cold Storage. Molecules 2023; 28:4675. [PMID: 37375230 DOI: 10.3390/molecules28124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
High-pressure homogenization (HPH) is an emerging technology for obtaining physical and microbial stability of plant-based milks, but there is little information on the effects of this technology on the phytochemical components of the processed plant food beverage and during its cold storage. The effect of three selected HPH treatments (180 MPa/25 °C, 150 MPa/55 °C, and 50 MPa/75 °C) and pasteurization (PAS) (63 °C, 20 min) on minor lipid constituents, total proteins, phenolic compounds, antioxidant capacity, and essential minerals of Brazil nut beverage (BNB) were studied. Additionally, the study of the possible changes in these constituents was carried out during cold storage at 5 °C for 21 days. The fatty acid profile (dominated by oleic acid and linoleic acid), free fatty acid content, protein, and essential minerals (notable source of Se and Cu) of the processed BNB remained almost stable to treatments (HPH and PAS). Specifically, reductions in squalene (22.7 to 26.4%) and γ-γ-tocopherol (28.4 to 36%) were observed in beverages processed via both non-thermal HPH and thermal PAS, but β-sitosterol remained unchanged. Total phenolics were reduced (24 to 30%) after both treatments, a factor that influenced the observed antioxidant capacity. The studied individual phenolics in BNB were gallic acid, catechin, epicatechin, catechin gallate, and ellagic acid, being the most abundant compounds. During cold storage (5 °C) up to 21 days, changes in the content of phytochemicals, minerals, and total proteins were not noticeable for any treated beverages, and no lipolysis processes were promoted. Therefore, after the application of HPH processing, Brazil nut beverage (BNB) maintained almost unaltered levels of bioactive compounds, essential minerals, total protein, and oxidative stability, remarkable characteristics for its potential development as a functional food.
Collapse
Affiliation(s)
- Wilson Valerio Vasquez-Rojas
- Department of Biotechnology and Microbiology of Foods, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Diana Martín
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - M Pilar Cano
- Department of Biotechnology and Microbiology of Foods, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
6
|
Luong HQ, Le TN, Lee PH, Hsieh PC. Optimization of nonspecific protease activity fabrication by Bacillus subtilis N30 isolated from Taiwan using different models of response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Tong SC, Siow LF, Tang TK, Lee YY. Plant-based milk: unravel the changes of the antioxidant index during processing and storage - a review. Crit Rev Food Sci Nutr 2022; 64:4603-4621. [PMID: 36377721 DOI: 10.1080/10408398.2022.2143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a nutrient rich emulsion extracted from plant materials, plant-based milk (PBM) has been the latest trend and hot topic in the food industry due to the growing awareness of consumers toward plant-based products in managing the environmental (carbon footprint and land utility), ethical (animal well-fare) and societal (health-conscious) issues. There have been extensive studies and reviews done to discuss the distinct perspective of PBM including its production, health effects and market acceptance. However, not much has been emphasized on the valuable antioxidants present in PBM which is one of the attributes making them stand apart from dairy milk. The amounts of antioxidants in PBM are important. They offered tremendous health benefits in maintaining optimum health and reducing the risk of various health disorders. Therefore, enhancing the extraction of antioxidants and preserving their activity during production and storage is important. However, there is a lack of a comprehensive review of how these antioxidants changes in response to different processing steps involved in PBM production. Presumably, antioxidants in PBM could be potentially lost due to thermal degradation, oxidation or leaching into processing water. Hence, this paper aims to fill the gaps by addressing an extensive review of how different production steps (germination, roasting, soaking, blanching, grinding and filtration, and microbial inactivation) affect the antioxidant content in PBM. In addition, the effect of different microbial inactivation treatments (thermal or non-thermal processing) on the alteration of antioxidant in PBM was also highlighted. This paper can provide useful insight for the industry that aims in selecting suitable processing steps to produce PBM products that carry with them a health declaration.
Collapse
Affiliation(s)
- S C Tong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - L F Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - T K Tang
- School of Food Studies and Gastronomy, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Y Y Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
- Monash-Industry Plant Oils Research Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
8
|
A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory, and Nutritional Value. SUSTAINABILITY 2022. [DOI: 10.3390/su14137996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumers are becoming increasingly interested in reducing the consumption of animal-based foods for health, sustainability, and ethical reasons. The food industry is developing products from plant-based ingredients that mimic animal-based foods’ nutritional and sensory characteristics. In this study, the focus is on plant-based milk alternatives (PBMAs). A potential problem with plant-based diets is the deficiency of important micronutrients, such as vitamin B12, B2, and calcium. Therefore, an analysis of micronutrients in PBMAs was conducted to assess their nutritional value. The second main focus was on the sensory description of the PBMAs, done by a trained panel, and instrumental assessment to characterize the sensory attributes. Almond drinks met the daily micronutrient requirements the least, while soy drinks came closest to cow’s milk in macro- and micronutrients. The experimentally determined electronic tongue and volatile compound results confirmed the sensory panel’s evaluations and could therefore be used as a method for easy and effective assessments of PBMAs. The PBMAs evaluated in this study could not completely replace cow’s milk’s nutritional and sensory properties. They are products in their own product group and must be evaluated accordingly. Given the variety of products, consumers should experiment and make their decisions regarding the substitution of cow’s milk.
Collapse
|
9
|
Bocker R, Silva EK. Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2021.100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Zaaboul F, Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr Rev Food Sci Food Saf 2022; 21:964-998. [PMID: 35181987 DOI: 10.1111/1541-4337.12924] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Vitamin E is a group of isoprenoid chromanols with different biological activities. It comprises eight oil-soluble compounds: four tocopherols, namely, α-, β-, γ-, and δ-tocopherols; and four tocotrienols, namely, α-, β-, γ, and δ-tocotrienols. Vitamin E isomers are well-known for their antioxidant activity, gene-regulation effects, and anti-inflammatory and nephroprotective properties. Considering that vitamin E is exclusively synthesized by photosynthetic organisms, animals can only acquire it through their diet. Plant-based food is the primary source of vitamin E; hence, oils, nuts, fruits, and vegetables with high contents of vitamin E are mostly consumed after processing, including industrial processes and home-cooking, which involve vitamin E profile and content alteration during their preparation. Accordingly, it is essential to identify the vitamin E content and profile in foodstuff to match daily intake requirements. This review summarizes recent advances in vitamin E chemistry, metabolism and metabolites, current knowledge on their contents and profiles in raw and processed plant foods, and finally, their modern developments in analytical methods.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| | - YuanFa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| |
Collapse
|
11
|
Effect of storage and heat treatment on the levels of bioactive flavonoids produced in fermented soy beverages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Penha CB, Santos VDP, Speranza P, Kurozawa LE. Plant-based beverages: Ecofriendly technologies in the production process. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Reyes-Jurado F, Soto-Reyes N, Dávila-Rodríguez M, Lorenzo-Leal A, Jiménez-Munguía M, Mani-López E, López-Malo A. Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- F. Reyes-Jurado
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - N. Soto-Reyes
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - M. Dávila-Rodríguez
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - A.C. Lorenzo-Leal
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - M.T. Jiménez-Munguía
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - E. Mani-López
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - A. López-Malo
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| |
Collapse
|
14
|
Li YT, Chen MS, Deng LZ, Liang YZ, Liu YK, Liu W, Chen J, Liu CM. Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Yong SXM, Song CP, Choo WS. Impact of High-Pressure Homogenization on the Extractability and Stability of Phytochemicals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.593259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High-pressure homogenization (HPH) and high-pressure processing (HPP) are emerging technologies for the food industry. Both technologies employ high pressure to preserve foods. However, the principal mechanism of HPH is based on shear stress distribution in a material instead of a decrease in volume due to an increase in pressure as occurring in HPP. HPH can be used in extraction or preservation of bioactive compounds and phytochemicals. This review first describes the mechanism of HPH processing. Next, this review discusses the impact of HPH on extractability and stability of phytochemicals such as carotenoids, vitamin C, polyphenols, and anthocyanins in various food matrices. In general, the use of HPH slightly improved or maintained the extractability of the phytochemicals. Similarly, HPH slightly reduced or maintained the stability of the phytochemicals but this is dependent on the food matrix and type of phytochemical. HPH has a great potential to be used to improve the extractability and maintaining the stability of these phytochemicals or to be used together with milder thermal processing. Besides understanding the impact of HPH on the extractability and stability of phytochemicals, the impact of HPH on the nutritional quality of the food matrices needs to be thoroughly evaluated.
Collapse
|
16
|
Rodríguez-Roque MJ, De Ancos B, Sánchez-Vega R, Sánchez-Moreno C, Elez-Martínez P, Martín-Belloso O. In vitro bioaccessibility of isoflavones from a soymilk-based beverage as affected by thermal and non-thermal processing. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Levy R, Okun Z, Shpigelman A. High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09239-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Gao W, Chen F, Wang X, Meng Q. Recent advances in processing food powders by using superfine grinding techniques: A review. Compr Rev Food Sci Food Saf 2020; 19:2222-2255. [DOI: 10.1111/1541-4337.12580] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Wenjie Gao
- School of Ecological Technology and EngineeringShanghai Institute of Technology Shanghai China
| | - Feng Chen
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
| | - Xi Wang
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
- Nutra Manufacturing Greenville South Carolina
| | - Qingran Meng
- Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| |
Collapse
|
19
|
Abstract
Biogenic amines are ubiquitous bioactive compounds that are synthesized by living organisms and perform essential functions for their metabolism. In the human diet, their excessive intake can cause food poisoning. In food, especially in alcohol-free beverages, biogenic amines can be synthesized by enzymes, naturally present in raw materials, or by microorganisms, which may be naturally present in the matrix or be added during beverage transformation processes. For this reason, in alcohol-free beverages, biogenic amine amount can be considered, above a certain level, as undesired microorganism activity. Therefore, it is important to evaluate the biogenic amine profile of non-alcoholic beverages in order to monitor food quality and safety. Moreover, biogenic amines can be taken into account by industries in order to monitor production processes and products. This review article provides an overview on the biogenic amine profile of alcohol-free beverages (plant milk, nervine drinks, soft drinks, and fruit juices). Furthermore, the clinical and toxicological effects, the biogenic amines legislation, and biogenic amine synthesis have been evaluated in non-alcoholic beverages.
Collapse
|
20
|
Munekata PES, Domínguez R, Budaraju S, Roselló-Soto E, Barba FJ, Mallikarjunan K, Roohinejad S, Lorenzo JM. Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods 2020; 9:foods9030288. [PMID: 32143400 PMCID: PMC7142651 DOI: 10.3390/foods9030288] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022] Open
Abstract
Increase in allergenicity towards cow’s milk, lactose intolerance, the prevalence of hypercholesterolemia, and flexitarian choice of food consumption have increased the market for cow’s milk alternatives. Non-dairy plant-based beverages are useful alternatives because of the presence of bioactive components with health-promoting properties, which attract health-conscious consumers. However, the reduced nutritional value and sensory acceptability of the plant-based beverages (such as flavor, taste, and solubility) compared to cow’s milk pose a big threat to its place in the market. Thermal treatments are commonly used to ensure the quality of plant-based beverages during storage. However, the application of high temperatures can promote the degradation of thermolabile compounds and some detrimental reactions, thus reducing protein digestibility and amino acid availability of non-dairy plant-based beverages substitutes. New and advanced food processing technologies, such as high-pressure processing, high-pressure homogenization, pulsed electric fields, and ultrasound, are being researched for addressing the issues related to shelf life increase, emulsion stability, preservation of nutritional content and sensorial acceptability of the final product. However, the literature available on the application of non-thermal processing technologies on the physicochemical and nutritional properties of plant-based beverages is scarce. Concerted research efforts are required in the coming years in the functional plant-based beverages sector to prepare newer, tailor-made products which are palatable as well as nutritionally adequate.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (R.D.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (R.D.)
| | - Sravanthi Budaraju
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (S.B.); (K.M.); (S.R.)
| | - Elena Roselló-Soto
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n 46100 Burjassot, València, Spain (F.J.B.)
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n 46100 Burjassot, València, Spain (F.J.B.)
| | - Kumar Mallikarjunan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (S.B.); (K.M.); (S.R.)
| | - Shahin Roohinejad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (S.B.); (K.M.); (S.R.)
- Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, 71348-14336 Shiraz, Iran
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (R.D.)
- Correspondence: ; Tel.: +34-988-548-277
| |
Collapse
|
21
|
Shimoyamada M. Current Status of Soymilk Processing and Structural Elucidation of Soymilk Components. J JPN SOC FOOD SCI 2020. [DOI: 10.3136/nskkk.67.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Xia X, Dai Y, Wu H, Liu X, Wang Y, Cao J, Zhou J. Effects of pressure and multiple passes on the physicochemical and microbial characteristics of lupin‐based beverage treated with high‐pressure homogenization. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiudong Xia
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Yiqiang Dai
- College of Food Science and Technology Nanjing Agriculture University Nanjing PR China
| | - Han Wu
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Xiaoli Liu
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Ying Wang
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Jianping Cao
- College of Food Science and Technology Nanjing Agriculture University Nanjing PR China
| | - Jianzhong Zhou
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| |
Collapse
|
23
|
Three Pillars of Novel Nonthermal Food Technologies: Food Safety, Quality, and Environment. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8619707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review gives an overview of the impact of novel nonthermal food technologies on food safety, on quality, and on the environment. It confirms that research in this field is mainly focused on analyzing microbial and/or chemical aspects of food safety. However, recent research shows that in spite of various food safety benefits, some negative (quality oriented) features occur. Finally, this paper shows the necessity of analyzing the environmental dimension of using these technologies.
Collapse
|
24
|
Rodarte D, Zamora A, Trujillo AJ, Juan B. Effect of ultra-high pressure homogenization on cream: Shelf life and physicochemical characteristics. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Pérez-Andrés JM, Charoux CMG, Cullen PJ, Tiwari BK. Chemical Modifications of Lipids and Proteins by Nonthermal Food Processing Technologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5041-5054. [PMID: 29672043 DOI: 10.1021/acs.jafc.7b06055] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A range of nonthermal techniques have demonstrated process efficacy in ensuring product safety, extension of shelf life, and in general a retention of key quality attributes. However, various physical, chemical and biochemical effects of nonthermal techniques on macro and micro nutrients are evident, leading to both desirable and undesirable changes in food products. The objective of this review is to outline the effects of nonthermal techniques on food chemistry and the associated degradation mechanisms with the treatment of foods. Oxidation is one of the key mechanisms responsible for undesirable effects induced by nonthermal techniques. Degradation of key macromolecules largely depends on the processing conditions employed. Various extrinsic and intrinsic control parameters of high-pressure processing, pulsed electric field, ultrasound processing, and cold atmospheric plasma on chemistry of processed food are outlined. Proposed mechanisms and associated degradation of macromolecules, i.e., proteins, lipids, and bioactive molecules resulting in food quality changes are also discussed.
Collapse
Affiliation(s)
- Juan M Pérez-Andrés
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
- BioPlasma Research Group, School of Food Science and Environmental Health , Dublin Institute of Technology , Cathal Brugha Street , Dublin 1 , Ireland
| | - Clémentine M G Charoux
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
- School of Biosystems and Food Engineering , University College Dublin , Dublin 4 , Ireland
| | - P J Cullen
- BioPlasma Research Group, School of Food Science and Environmental Health , Dublin Institute of Technology , Cathal Brugha Street , Dublin 1 , Ireland
- Department of Chemical and Environmental Engineering , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Brijesh K Tiwari
- Food Chemistry and Technology , Teagasc Food Research Centre , Dublin 3 , Ireland
| |
Collapse
|
26
|
Roselló-Soto E, Poojary MM, Barba FJ, Koubaa M, Lorenzo JM, Mañes J, Moltó JC. Thermal and non-thermal preservation techniques of tiger nuts' beverage “horchata de chufa”. Implications for food safety, nutritional and quality properties. Food Res Int 2018; 105:945-951. [DOI: 10.1016/j.foodres.2017.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022]
|
27
|
Ravanfar R, Comunian TA, Dando R, Abbaspourrad A. Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method. Food Chem 2018; 241:460-467. [DOI: 10.1016/j.foodchem.2017.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
|
28
|
Bustamante-Rangel M, Delgado-Zamarreño MM, Pérez-Martín L, Rodríguez-Gonzalo E, Domínguez-Álvarez J. Analysis of Isoflavones in Foods. Compr Rev Food Sci Food Saf 2018; 17:391-411. [DOI: 10.1111/1541-4337.12325] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Myriam Bustamante-Rangel
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - María Milagros Delgado-Zamarreño
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Lara Pérez-Martín
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Encarnación Rodríguez-Gonzalo
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Javier Domínguez-Álvarez
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| |
Collapse
|
29
|
Park HJ, Jung MY. One step salting-out assisted liquid-liquid extraction followed by UHPLC-ESI-MS/MS for the analysis of isoflavones in soy milk. Food Chem 2017; 229:797-804. [DOI: 10.1016/j.foodchem.2017.02.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
30
|
Potential application of ultra-high pressure homogenization in the physico-chemical stabilization of tiger nuts' milk beverage. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.06.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Gadkari PV, Shashidhar M, Balaraman M. Delivery of green tea catechins through Oil-in-Water (O/W) nanoemulsion and assessment of storage stability. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Martínez-Monteagudo SI, Yan B, Balasubramaniam VM. Engineering Process Characterization of High-Pressure Homogenization—from Laboratory to Industrial Scale. FOOD ENGINEERING REVIEWS 2016. [DOI: 10.1007/s12393-016-9151-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Potential of high pressure homogenization to solubilize chicken breast myofibrillar proteins in water. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.11.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Huang YC, Kuo MI. Rheological Characteristics and Gelation of Tofu Made from Ultra-High-Pressure Homogenized Soymilk. J Texture Stud 2015. [DOI: 10.1111/jtxs.12133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying-Chia Huang
- Department of Food Science; Fu Jen Catholic University; New Taipei City Taiwan
| | - Meng-I Kuo
- Department of Food Science; Fu Jen Catholic University; New Taipei City Taiwan
| |
Collapse
|
35
|
Isoflavone profile and protein quality during storage of sterilised soymilk treated by ultra high pressure homogenisation. Food Chem 2015; 167:78-83. [DOI: 10.1016/j.foodchem.2014.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 02/01/2023]
|
36
|
Toro-Funes N, Bosch-Fusté J, Veciana-Nogués M, Vidal-Carou M. Changes of isoflavones and protein quality in soymilk pasteurised by ultra-high-pressure homogenisation throughout storage. Food Chem 2014; 162:47-53. [DOI: 10.1016/j.foodchem.2014.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/16/2022]
|
37
|
Zamora A, Guamis B. Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food Industry. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9097-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Toro-Funes N, Bosch-Fusté J, Veciana-Nogués MT, Vidal-Carou MC. Influence of ultra-high-pressure homogenization treatment on the phytosterols, tocopherols, and polyamines of almond beverage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9539-9543. [PMID: 25188722 DOI: 10.1021/jf503324f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ultra-high-pressure homogenization (UHPH) is an emerging technology based on the dynamic application of high pressure to obtain safe and high-quality liquid foods. The effect of six UHPH treatments at 200 and 300 MPa with different inlet temperatures (T(in)) (55, 65, and 75 °C) on the content of tocopherols, polyamines, and phytosterols of almond beverage was studied in comparison with the base product. Total tocopherol contents decreased about 80-90% as temperature and pressure increased, and whereas both parameters affected the tocopherol content, especially the effect of temperature was noticeable. α-Tocopherol was the most predominant type of tocopherol present and was also the most affected by UHPH treatments. Spermidine was the only polyamine found not to be affected by UHPH treatments. UHPH treatments resulted in an increase of 20-40% in the total phytosterol extractability. The highest extractability was obtained at the most severe conditions (300 MPa, 75 °C T(in)).
Collapse
Affiliation(s)
- Natalia Toro-Funes
- Department of Nutrition and Food Science-XaRTA, INSA, Campus de l'Alimentació de Torribera, University of Barcelona , Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Barcelona, Spain
| | | | | | | |
Collapse
|