1
|
Jacquier JC, Duffy C, O'Sullivan M, Dillon E. Copper-Chelated Chitosan Microgels for the Selective Enrichment of Small Cationic Peptides. Gels 2024; 10:289. [PMID: 38786205 PMCID: PMC11121711 DOI: 10.3390/gels10050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Copper-chelated chitosan microgels were investigated as an immobilized metal affinity chromatography (IMAC) phase for peptide separation. The copper-crosslinked chitosan beads were shown to strongly interact with a range of amino acids, in a wide range of pH and saline conditions. The beads exhibited an affinity that seemed to depend on the isoelectric point of the amino acid, with the extent of uptake increasing with decreasing isoelectric point. This selective interaction with anionic amino acids resulted in a significant relative enrichment of the supernatant solution in cationic amino acids. The beads were then studied as a novel fractionation system for complex milk hydrolysates. The copper chitosan beads selectively removed larger peptides from the hydrolysate aqueous solution, yielding a solution relatively enriched in medium and smaller peptides, which was characterized both quantitatively and qualitatively by size exclusion chromatography (SEC). Liquid chromatography-mass spectrometry (LCMS) work provided comprehensive data on a peptide sequence level and showed that a depletion of the anionic peptides by the beads resulted in a relative enrichment of the cationic peptides in the supernatant solution. It could be concluded that after fractionation a dramatic relative enrichment in respect to small- and medium-sized cationic peptides in the solution, characteristics that have been linked to bioactivities, such as anti-microbial and cell-penetrating properties. The results demonstrate the use of the chitosan copper gel bead system in lab scale fractionation of complex hydrolysate mixtures, with the potential to enhance milk hydrolysate bioactivity.
Collapse
Affiliation(s)
- Jean-Christophe Jacquier
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ciara Duffy
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michael O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Eugène Dillon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Zhao Y, Yan M, Xue S, Zhang T, Shen X. Influence of ultrasound and enzymatic cross-linking on freeze-thaw stability and release properties of whey protein isolate hydrogel. J Dairy Sci 2022; 105:7253-7265. [PMID: 35863927 DOI: 10.3168/jds.2021-21605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
This study investigated the effect of ultrasound and enzymatic cross-linking on the freeze-thaw (FT) stability and release properties of whey protein isolate hydrogels. We evaluated the FT stability by the changes in the microstructure, riboflavin retention, syneresis, water holding capacity (WHC), and texture of gels subjected to 3 FT cycles. High-intensity ultrasound (HUS) and transglutaminase (TGase)-mediated cross-linking improved the FT stability of whey protein isolate hydrogels loaded with riboflavin (WPISAR), as demonstrated by a more uniform and denser porous structure, significantly higher riboflavin retention, WHC, and textural properties, and lower syneresis after 3 FT cycles than those of untreated hydrogels. Furthermore, HUS- and TGase-mediated cross-linking decreased protein erosion and swelling ratio of WPISAR in simulated gastrointestinal fluids (SGIF) and reduced the riboflavin release rate in SGIF both with and without the addition of digestive enzymes. After 3 FT cycles, faster riboflavin release occurred due to a more porous structure induced by ice crystal formation compared with their unfrozen counterparts as detected by confocal laser scanning microscopy. High-intensity ultrasound- and TGase-mediated cross-linking alleviated the FT-induced faster riboflavin release rate in SGIF. High-intensity ultrasound- and TGase-treated gel samples showed that both diffusion and network erosion were responsible for riboflavin release regardless of FT. These results suggest that HUS- and TGase-mediated cross-linking improved the FT stability of WPISAR with a high riboflavin retention, and might be a good candidate as a controlled-release vehicle for riboflavin delivery to overcome undesired FT processing.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Mi Yan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shiqi Xue
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Lunkad R, Barroso da Silva FL, Košovan P. Both Charge-Regulation and Charge-Patch Distribution Can Drive Adsorption on the Wrong Side of the Isoelectric Point. J Am Chem Soc 2022; 144:1813-1825. [DOI: 10.1021/jacs.1c11676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Fernando L. Barroso da Silva
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| |
Collapse
|
4
|
Kumar M, Tomar M, Punia S, Dhakane-Lad J, Dhumal S, Changan S, Senapathy M, Berwal MK, Sampathrajan V, Sayed AA, Chandran D, Pandiselvam R, Rais N, Mahato DK, Udikeri SS, Satankar V, Anitha T, Reetu, Radha, Singh S, Amarowicz R, Kennedy JF. Plant-based proteins and their multifaceted industrial applications. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Karbasi M, Askari G. Modification of whey protein microgel particles with mono- oligo- and polysaccharides through the Maillard reaction: Effects on structural and techno-functional properties. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Teimouri S, Dekiwadia C, Kasapis S. Decoupling diffusion and macromolecular relaxation in the release of vitamin B6 from genipin-crosslinked whey protein networks. Food Chem 2021; 346:128886. [PMID: 33422921 DOI: 10.1016/j.foodchem.2020.128886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
This study examined the release of vitamin B6 from a hydrogel made of whey protein isolate (WPI). Work was carried out at ambient temperature without preheating the whey protein. Native-state macromolecules were crosslinked with a nontoxic compound, genipin. Experimentation included a ninhydrin assay with UV-vis absorbance, FTIR, 13C NMR, compression testing, SEM imaging, WPI matrix swelling and vitamin release protocols. It was confirmed that geninin crosslinked effectively the protein chains whose network strength was reinforced with increasing crosslinker concentrations. The modified Flory-Rehner theory predicted the molecular weight between crosslinks, network mesh size and crosslinking density in the swollen WPI gels as a function of added crosslinker. Transport patterns of vitamin B6 through the polymeric matrix were monitored over prolonged periods of observation. These were examined with the generalised Fick's equation and the Peppas-Sahlin equation to unveil the interplay between diffusion and relaxation dynamics in the anomalous transport of the bioactive compound.
Collapse
Affiliation(s)
- Shahla Teimouri
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| | - Chaitali Dekiwadia
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia.
| |
Collapse
|
7
|
Gul K, Gan RY, Sun CX, Jiao G, Wu DT, Li HB, Kenaan A, Corke H, Fang YP. Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Crit Rev Food Sci Nutr 2021; 62:3817-3832. [PMID: 33406881 DOI: 10.1080/10408398.2020.1870034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels, polymeric network materials, are capable of swelling and holding the bulk of water in their three-dimensional structures upon swelling. In recent years, hydrogels have witnessed increased attention in food and biomedical applications. In this paper, the available literature related to the design concepts, types, functionalities, and applications of hydrogels with special emphasis on food applications was reviewed. Hydrogels from natural polymers are preferred over synthetic hydrogels. They are predominantly used in diverse food applications for example in encapsulation, drug delivery, packaging, and more recently for the fabrication of structured foods. Natural polymeric hydrogels offer immense benefits due to their extraordinary biocompatible nature. Hydrogels based on natural/edible polymers, for example, those from polysaccharides and proteins, can serve as prospective alternatives to synthetic polymer-based hydrogels. The utilization of hydrogels has so far been limited, despite their prospects to address various issues in the food industries. More research is needed to develop biomimetic hydrogels, which can imitate the biological characteristics in addition to the physicochemical properties of natural materials for different food applications.
Collapse
Affiliation(s)
- Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cui-Xia Sun
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Jiao
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, China Sichuan
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ya-Peng Fang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
CaCl2 supplementation of hydrophobised whey proteins: Assessment of protein particles and consequent emulsions. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Barroso da Silva FL, Carloni P, Cheung D, Cottone G, Donnini S, Foegeding EA, Gulzar M, Jacquier JC, Lobaskin V, MacKernan D, Mohammad Hosseini Naveh Z, Radhakrishnan R, Santiso EE. Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations. Annu Rev Food Sci Technol 2020; 11:365-387. [PMID: 31951485 DOI: 10.1146/annurev-food-032519-051640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structure and interactions of proteins play a critical role in determining the quality attributes of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding of the structure-function relationships of proteins can provide greater insight into, and control of, the relevant processes at play. Combining data from experimental measurements, human sensory panels, and computer simulations through machine learning allows the construction of statistical models relating nanoscale properties of proteins to the physicochemical properties, physiological outcomes, and tastes of foods. This review highlights several examples of advanced computer simulations at molecular, mesoscale, and multiscale levels that shed light on the mechanisms at play in foods, thereby facilitating their control. It includes a practical simulation toolbox for those new to in silico modeling.
Collapse
Affiliation(s)
- Fernando Luís Barroso da Silva
- School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, BR-14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Paolo Carloni
- Institute for Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - David Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Grazia Cottone
- Department of Physics and Chemistry, University of Palermo, 90128 Palermo, Italy
| | - Serena Donnini
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - E Allen Foegeding
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Muhammad Gulzar
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | | | - Donal MacKernan
- UCD School of Physics, University College Dublin, Dublin 4, Ireland
| | | | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
10
|
Martins JT, Bourbon AI, Pinheiro AC, Fasolin LH, Vicente AA. Protein-Based Structures for Food Applications: From Macro to Nanoscale. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Abaee A, Mohammadian M, Jafari SM. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Srivastava D, Santiso E, Gubbins K, Barroso da Silva FL. Computationally Mapping pK a Shifts Due to the Presence of a Polyelectrolyte Chain around Whey Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11417-11428. [PMID: 28859478 DOI: 10.1021/acs.langmuir.7b02271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Experimental studies have shown the formation of soluble complexes in the pure repulsive Coulombic regime even when the net charges of the protein and the polyelectrolyte have the same sign ( De Kruif et al. Curr. Opin. Colloid Interface Sci. 2004 , 9 , 340 ; De Vries et al. J. Chem. Phys. 2003 , 118 , 4649 ; Grymonpre et al. Biomacromolecules 2001 , 2 , 422 ; Hattori et al. Langmuir 2000 , 16 , 9738 ). This attractive phenomenon has often been described as "complexation on the wrong side of pI". While one theory assumes the existence of "charged patches" on the protein surface from ion-dipole interactions, thus allowing a polyelectrolyte to bind to an oppositely heterogeneous charged protein region, another theoretical view considers the induced-charge interactions to be the dominant factor in these complexations. This charge regulation mechanism can be described by proton fluctuations resulting from mutual rearrangements of the distributions of the charged groups, due to perturbations of the acid-base equilibrium. Using constant-pH Monte Carlo simulations and several quantitative and visual analysis tools, we investigate the significance of each of these interactions for two whey proteins, α-lactalbumin (α-LA) and lysozyme (LYZ). Through physical chemistry parameters, free energies of interactions, and the mapping of amino acid pKa shifts and polyelectrolyte trajectories, we show the charge regulation mechanism to be the most important contributor in protein-polyelectrolyte complexation regardless of pH, dipole moment, and protein capacitance in a low salt regime.
Collapse
Affiliation(s)
- Deepti Srivastava
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Erik Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Keith Gubbins
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Fernando Luís Barroso da Silva
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
- Department of Physics and Chemistry, School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo , 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Barroso daSilva FL, Dias LG. Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems. Biophys Rev 2017; 9:699-728. [PMID: 28921104 PMCID: PMC5662048 DOI: 10.1007/s12551-017-0311-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
pH is a critical parameter for biological and technological systems directly related with electrical charges. It can give rise to peculiar electrostatic phenomena, which also makes them more challenging. Due to the quantum nature of the process, involving the forming and breaking of chemical bonds, quantum methods should ideally by employed. Nevertheless, due to the very large number of ionizable sites, different macromolecular conformations, salt conditions, and all other charged species, the CPU time cost simply becomes prohibitive for computer simulations, making this a quite complex problem. Simplified methods based on Monte Carlo sampling have been devised and will be reviewed here, highlighting the updated state-of-the-art of this field, advantages, and limitations of different theoretical protocols for biomolecular systems (proteins and nucleic acids). Following a historical perspective, the discussion will be associated with the applications to protein interactions with other proteins, polyelectrolytes, and nanoparticles.
Collapse
Affiliation(s)
- Fernando Luís Barroso daSilva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do café, s/no. - Universidade de São Paulo, BR-14040-903, Ribeirão Preto, SP, Brazil.
- UCD School of Physics, UCD Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland.
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| | - Luis Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes, 3900 - Universidade de São Paulo, BR-14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Barroso da Silva FL, MacKernan D. Benchmarking a Fast Proton Titration Scheme in Implicit Solvent for Biomolecular Simulations. J Chem Theory Comput 2017; 13:2915-2929. [DOI: 10.1021/acs.jctc.6b01114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fernando Luís Barroso da Silva
- Departamento
de Fı́sica e Quı́mica, Faculdade
de Ciências Farmacêuticas de Ribeirão Preto,
Av. do café, s/no. − Universidade de São Paulo, BR-14040-903 Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
15
|
Aguilera JM, Park DJ. Texture-modified foods for the elderly: Status, technology and opportunities. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
|
17
|
Torres O, Murray B, Sarkar A. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Barroso da Silva FL, Pasquali S, Derreumaux P, Dias LG. Electrostatics analysis of the mutational and pH effects of the N-terminal domain self-association of the major ampullate spidroin. SOFT MATTER 2016; 12:5600-12. [PMID: 27250106 DOI: 10.1039/c6sm00860g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Spider silk is a fascinating material combining mechanical properties such as maximum strength and high toughness comparable or better than man-made materials, with biocompatible degradability characteristics. Experimental measurements have shown that pH triggers the dimer formation of the N-terminal domain (NTD) of the major ampullate spidroin 1 (MaSp 1). A coarse-grained model accounting for electrostatics, van der Waals and pH-dependent charge-fluctuation interactions, by means of Monte Carlo simulations, gave us a more comprehensive view of the NTD dimerization process. A detailed analysis of the electrostatic properties and free energy derivatives for the NTD homoassociation was carried out at different pH values and salt concentrations for the protein wild type and for several mutants. We observed an enhancement of dipole-dipole interactions at pH 6 due to the ionization of key amino acids, a process identified as the main driving force for dimerization. Analytical estimates based on the DVLO theory framework corroborate our findings. Molecular dynamics simulations using the OPEP coarse-grained force field for proteins show that the mutant E17Q is subject to larger structural fluctuations when compared to the wild type. Estimates of the association rate constants for this mutant were evaluated by the Debye-Smoluchowski theory and are in agreement with the experimental data when thermally relaxed structures are used instead of the crystallographic data. Our results can contribute to the design of new mutants with specific association properties.
Collapse
Affiliation(s)
- Fernando Luís Barroso da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do café, s/no. - Universidade de São Paulo, BR-14040-903 Ribeirão Preto - SP, Brazil.
| | | | | | | |
Collapse
|
19
|
Onsekizoglu Bagci P, Gunasekaran S. Iron-encapsulated cold-set whey protein isolate gel powder - Part 2: Effect of iron fortification on sensory and storage qualities of Yoghurt. INT J DAIRY TECHNOL 2016. [DOI: 10.1111/1471-0307.12316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering; University of Wisconsin-Madison; 460 Henry Mall Madison WI 53706 USA
| |
Collapse
|
20
|
|
21
|
O'Neill GJ, Jacquier JC, Mukhopadhya A, Egan T, O'Sullivan M, Sweeney T, O'Riordan ED. In vitro and in vivo evaluation of whey protein hydrogels for oral delivery of riboflavin. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
22
|
Kimpel F, Schmitt JJ. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals. J Food Sci 2015; 80:R2361-6. [DOI: 10.1111/1750-3841.13096] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/03/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Florian Kimpel
- Dept. of Food Technology; Fulda Univ. of Applied Sciences; Leipziger St 123 36037 Fulda Germany
| | - Joachim J. Schmitt
- Dept. of Food Technology; Fulda Univ. of Applied Sciences; Leipziger St 123 36037 Fulda Germany
| |
Collapse
|
23
|
O’Neill GJ, Egan T, Jacquier JC, O’Sullivan M, Dolores O’Riordan E. Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads. Food Chem 2015; 180:150-155. [DOI: 10.1016/j.foodchem.2015.01.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 01/10/2015] [Accepted: 01/31/2015] [Indexed: 11/29/2022]
|