1
|
Zhong W, Yu Y, Zhang B, Tao D, Fang J, Ma F. Effect of H 2O 2-assisted ultrasonic bath on the degradation and physicochemical properties of pectin. Int J Biol Macromol 2024; 258:128863. [PMID: 38143060 DOI: 10.1016/j.ijbiomac.2023.128863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
The effects of H2O2-assisted ultrasonic bath degradation technology on pectin were investigated. The degradation efficiency with different pectin concentrations, H2O2 concentrations, ultrasonic power, and ultrasonic time was analyzed. The results showed that pectin concentration was negatively correlated with the degradation efficiency of pectin, while, H2O2 concentration, ultrasonic power, and ultrasonic time were positive correlated with the degradation efficiency. Besides, the apparent viscosity and viscoelasticity of the degraded pectin decreased significantly. The antioxidant activity increased after the H2O2-assisted ultrasonic bath treatment. The results of FTIR, NMR, laser particle size, SEM, XRD, and AFM analysis indicated that the degradation treatment did not destroy the main structure of pectin. The average particle size and crystallinity of pectin decreased. The degree of aggregation and the height of the molecular chain decreased significantly. In conclusion, the H2O2-assisted ultrasonic bath degradation technique could effectively degrade pectin. This study provided a comprehensive analysis of the degradation of pectin under H2O2-assisted ultrasonic bath, which will be beneficial to further develop H2O2-assisted ultrasonic bath techniques for pectin degradation.
Collapse
Affiliation(s)
- Weitian Zhong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- China Certification & Inspection Group Liaoning Co., Ltd., Shenyang 110866, China
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Fang
- Tianjin Agricultural Development Service Center, Tianjin 300202, China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Chongqing Research Institute of HIT, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Yue Y, Wang B, Xi W, Liu X, Tang S, Tan X, Li G, Huang L, Liu Y, Bai J. Modification methods, biological activities and applications of pectin: A review. Int J Biol Macromol 2023; 253:127523. [PMID: 37866576 DOI: 10.1016/j.ijbiomac.2023.127523] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Pectin is a complex and functionally rich natural plant polysaccharide that is widely used in food, medical, and cosmetic industries. It can be modified to improve its properties and expand its applications. Modification methods for natural pectin can be divided into physical, chemical, enzymatic, and compound methods. Different modification methods can result in modified pectins (MPs) exhibiting different physicochemical properties and biological activities. The objectives of this paper were to review the various pectin modification methods explored over the last decade, compare their differences, summarize the impact of different modification methods on the biological activity and physicochemical properties of pectin, and describe the applications of MPs in food and pharmaceutical fields. Finally, suggestions and perspectives for the development of MPs are discussed. This review offers a theoretical reference for the rational and efficient processing of pectin and the expansion of its applications.
Collapse
Affiliation(s)
- Yuanyuan Yue
- Citrus Research Institute, Southwest University, Chongqing 400700, China; College of Food, Shihezi University, Shihezi 832003, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan 250000, China
| | - Wenxia Xi
- Citrus Research Institute, Southwest University, Chongqing 400700, China; College of Food, Shihezi University, Shihezi 832003, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Ya Liu
- College of Food, Shihezi University, Shihezi 832003, China.
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| |
Collapse
|
3
|
Czerniel J, Gostyńska A, Jańczak J, Stawny M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur J Pharm Biopharm 2023; 191:36-56. [PMID: 37586663 DOI: 10.1016/j.ejpb.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.
Collapse
Affiliation(s)
- Joanna Czerniel
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland.
| | - Julia Jańczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| |
Collapse
|
4
|
van der Sman R, van der Goot A. Hypotheses concerning structuring of extruded meat analogs. Curr Res Food Sci 2023; 6:100510. [PMID: 37275388 PMCID: PMC10236473 DOI: 10.1016/j.crfs.2023.100510] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
In this paper, we review the physicochemical phenomena occurring during the structuring processes in the manufacturing of plant-based meat analogs via high-moisture-extrusion (HME). After the initial discussion on the input materials, we discuss the hypotheses behind the physics of the functional tasks that can be defined for HME. For these hypotheses, we have taken a broader view than only the scientific literature on plant-based meat analogs but incorporated also literature from soft matter physics and patent literature. Many of these hypotheses remain to be proven. Hence, we hope that this overview will inspire researchers to fill the still-open knowledge gaps concerning the multiscale structure of meat analogs.
Collapse
Affiliation(s)
- R.G.M. van der Sman
- Wageningen Food Biobased Research, the Netherlands
- Food Process Engineering, Wageningen University, the Netherlands
| | | |
Collapse
|
5
|
Hu W, Li P, Guo D, Zhang B, Tao D, Li J, Zhong W, Zang H, Xu Y, Ma F. Effect of solution pulsed plasma process on the degradation and physicochemical properties of pectin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Yu W, Li Q. The Preparation and Potential Bioactivities of Modified Pectins: A Review. Foods 2023; 12:1016. [PMID: 36900531 PMCID: PMC10001417 DOI: 10.3390/foods12051016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Pectins are complex polysaccharides that are widely found in plant cells and have a variety of bioactivities. However, the high molecular weights (Mw) and complex structures of natural pectins mean that they are difficult for organisms to absorb and utilize, limiting their beneficial effects. The modification of pectins is considered to be an effective method for improving the structural characteristics and promoting the bioactivities of pectins, and even adding new bioactivities to natural pectins. This article reviews the modification methods, including chemical, physical, and enzymatic methods, for natural pectins from the perspective of their basic information, influencing factors, and product identification. Furthermore, the changes caused by modifications to the bioactivities of pectins are elucidated, including their anti-coagulant, anti-oxidant, anti-tumor, immunomodulatory, anti-inflammatory, hypoglycemic, and anti-bacterial activities and the ability to regulate the intestinal environment. Finally, suggestions and perspectives regarding the development of pectin modification are provided.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| |
Collapse
|
7
|
Karaz S, Senses E. Liposomes Under Shear: Structure, Dynamics, and Drug Delivery Applications. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Selcan Karaz
- Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey
| | - Erkan Senses
- Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey
| |
Collapse
|
8
|
Chemical composition, structural and functional properties of insoluble dietary fiber obtained from the Shatian pomelo peel sponge layer using different modification methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Trends in "green" and novel methods of pectin modification - A review. Carbohydr Polym 2022; 278:118967. [PMID: 34973782 DOI: 10.1016/j.carbpol.2021.118967] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
Modification of hydrocolloids to alter their functional properties using chemical methods is well documented in the literature. There has been a recent trend of adopting eco-friendly and "green" methods for modification. Pectin, being a very important hydrocolloid finds its use in various food applications due to its gelling, emulsifying, and stabilizing properties. The adoption of various "green" methods can alter the properties of pectin and make it more suitable for incorporation in food products. The novel approaches such as microwave and pulsed electric field can also be utilized for solvent-free modification, making it desirable from the perspective of sustainability, as it reduces the consumption of organic chemicals. Pectic oligosaccharides (POSs) produced via novel approaches are being explored for their biological properties and incorporation in various functional foods. The review can help to set the perspective of potential scale-up and adoption by the food industry for modification of pectin.
Collapse
|
10
|
Zhu L, Yu B, Chen H, Yu J, Yan H, Luo Y, He J, Huang Z, Zheng P, Mao X, Luo J, Chen D. Comparisons of the micronization, steam explosion, and gamma irradiation treatment on chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. Food Chem 2022; 366:130618. [PMID: 34330028 DOI: 10.1016/j.foodchem.2021.130618] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/28/2023]
Abstract
The objective of this study was to compare the effects of the micronization (MT), steam explosion (SE), and gamma irradiation (GI) treatment on the chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. GI (1200 kGy) treatment exerted the optimum effects on improving soluble dietary fiber content, in vitro gross energy digestibility (IVGED), and reducing sugar yield (RS) in the three modification methods, increased by 342.88%, 55.24%, and 117.02%, respectively. Compared with GI treatment, MT-GI combined treatment could further enhance the degradation effect of irradiation and improve the physicochemical properties (p<0.05) in soybean fibers. From the results of correlation analysis, RS was a significant positive correlation (p<0.05) with IVGED, and RS = -112.24 + 4.90 × IVGED (r2 = 0.82, p<0.01). In summary, MT-GI combined treatment could be considered the ideal modification method to improve the quality of soybean fiber.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
ERASO-GRISALES S, CORTES-RODRÍGUEZ M, CASTAÑO-PELÁEZ HI, HURTADO-BENAVIDES A. Enzymatic hydrolysis of a colloidal system based on cape gooseberry. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.67820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Yuan Y, Cai W, Chen Y, Chong Y, Dong X, Wei J, Liu F, Shi Y. Effects of modified starch and homogeneous process on quality and volatile compounds of squid ink sauces. J Food Saf 2021. [DOI: 10.1111/jfs.12959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan‐wei Yuan
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Wen‐qiang Cai
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- National Engineering Research Center of Seafood Dalian China
| | - Yue‐wen Chen
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Yun‐qing Chong
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Xiu‐ping Dong
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- National Engineering Research Center of Seafood Dalian China
| | - Jian‐ling Wei
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Fei‐jian Liu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Yu‐gang Shi
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| |
Collapse
|
13
|
Effects of creeping fig seed polysaccharide on pasting, rheological, textural properties and in vitro digestibility of potato starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Xiao W, Shen M, Ren Y, Rong L, Liu W, Chen X, Yang J, Li J, Xie J. Mesona chinensis polysaccharides promote molecular crosslinking and gel formation of debranched waxy maize starch. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Lin Y, An F, He H, Geng F, Song H, Huang Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
The influence of pH and monovalent ions on the gelation of pectin from the fruit seeds of the creeping fig plant. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Flash extraction optimization of low-temperature soluble pectin from passion fruit peel (Passiflora edulis f. flavicarpa) and its soft gelation properties. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Chen J, Niu X, Dai T, Hua H, Feng S, Liu C, McClements DJ, Liang R. Amino acid-amidated pectin: Preparation and characterization. Food Chem 2020; 309:125768. [DOI: 10.1016/j.foodchem.2019.125768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023]
|
19
|
Wang C, Li L, Zhang Q, Raheem D, Qin W, Wu D, Hu B, Yang W, Dong H, Vasanthan T, Zhang Q. Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02417-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
High-speed shearing of soybean flour suspension disintegrates the component cell layers and modifies the hydration properties of okara fibers. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Jurić S, Ferrari G, Velikov KP, Donsì F. High-pressure homogenization treatment to recover bioactive compounds from tomato peels. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
|
23
|
Chen X, Qi Y, Zhu C, Wang Q. Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin. Int J Biol Macromol 2019; 131:273-281. [DOI: 10.1016/j.ijbiomac.2019.03.077] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/02/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
|
24
|
Effects of ultrasound pretreatment on the enzymolysis of pectin: Kinetic study, structural characteristics and anti-cancer activity of the hydrolysates. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chem 2017; 232:443-449. [DOI: 10.1016/j.foodchem.2017.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 01/27/2023]
|
27
|
Xu K, Guo M, Du J. Molecular characteristics and rheological properties of water-extractable polysaccharides derived from okra (Abelmoschus esculentus L.). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1315594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Mengmeng Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jinhua Du
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|