1
|
Mat K, Abdul Kari Z, Rusli ND, Che Harun H, Wei LS, Rahman MM, Mohd Khalid HN, Mohd Ali Hanafiah MH, Mohamad Sukri SA, Raja Khalif RIA, Mohd Zin Z, Mohd Zainol MK, Panadi M, Mohd Nor MF, Goh KW. Coconut Palm: Food, Feed, and Nutraceutical Properties. Animals (Basel) 2022; 12:ani12162107. [PMID: 36009697 PMCID: PMC9405385 DOI: 10.3390/ani12162107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Different components of the coconut are being looked into and used as a potential substitute to create or substitute animal feed components. Different coconut products and by-products—such as coconut water, milk, copra, testa, flour, raw kernels, oil, and desiccated coconut—are used with livestock, especially ruminants and aquaculture industries. However, the use of coconut in animal feed may be limited by several things that make it less nutritious. There is a possibility to research new technologies, such as pre-treating coconut to reduce the effects of anti-nutritional substances before they can be used to feed the animals. This review article describes a few important discoveries, which gives a somewhat hopeful view of the future. Different parts of the coconut can and should be used more in animal feed. Coconut in animal feed makes it much cheaper to feed animals and helps them in the digestion process, growth, and health. However, innovative methods of processing, extracting, and treating coconut need to be encouraged to improve nutritional quality and make coconut products function efficiently in feed. Abstract The price of traditional sources of nutrients used in animal feed rations is increasing steeply in developed countries due to their scarcity, high demand from humans for the same food items, and expensive costs of raw materials. Thus, one of the alternative sources is coconut parts or coconut as a whole fruit. Coconut is known as the ‘tree of abundance’, ‘tree of heaven’, and ‘tree of life’ owing to its numerous uses, becoming a very important tree in tropical areas for its provision of food, employment, and business opportunities to millions of people. Coconut contains a rich profile of macro and micronutrients that vary depending on the parts and how they are used. It is frequently chosen as an alternative source of protein and fiber. Its uses as an antibacterial agent, immunomodulant, and antioxidant further increase its importance. Using coconut oil in ruminant feed helps to minimize methane gas emissions by 18–30%, and to reduce dry matter intake up to 4.2 kg/d. The aquaculture sectors also use coconut palm as an alternative source because it significantly improves the digestion, growth, lipid metabolism, health, and antioxidative responses. However, coconut is not widely used in poultry diets although it has adequate amount of protein and carbohydrate due to anti-nutritional factors such cellulose (13%), galactomannan (61%), and mannan (26%). This review considered the importance and potential of coconut usage as an alternative ingredient in feed and supplements in various livestock sectors as it has plentiful nutrients and functional qualities, simultaneously leading to reduced feed cost and enhanced production.
Collapse
Affiliation(s)
- Khairiyah Mat
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Institute of Food Security and Sustainable Agriculture, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Correspondence: (K.M.); (K.W.G.)
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Nor Dini Rusli
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Institute of Food Security and Sustainable Agriculture, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Hasnita Che Harun
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Institute of Food Security and Sustainable Agriculture, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Lee Seong Wei
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Mohammad Mijanur Rahman
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Hazreen Nita Mohd Khalid
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | | | - Suniza Anis Mohamad Sukri
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | | | - Zamzahaila Mohd Zin
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Khairi Mohd Zainol
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mira Panadi
- Department of Clinical Sciences and Sport Technology, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Jalan Pontian Lama, Skudai, Johor Bahru 81300, Johor, Malaysia
| | - Mohamad Faiz Mohd Nor
- Faculty of Agro Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia
- Correspondence: (K.M.); (K.W.G.)
| |
Collapse
|
3
|
Marsol-Vall A, Aitta E, Guo Z, Yang B. Green technologies for production of oils rich in n-3 polyunsaturated fatty acids from aquatic sources. Crit Rev Food Sci Nutr 2021; 62:2942-2962. [PMID: 33480261 DOI: 10.1080/10408398.2020.1861426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fish and algae are the major sources of n-3 polyunsaturated fatty acids (n-3 PUFAs). Globally, there is a rapid increase in demand for n-3 PUFA-rich oils. Conventional oil production processes use high temperature and chemicals, compromising the oil quality and the environment. Hence, alternative green technologies have been investigated for producing oils from aquatic sources. While most of the studies have focused on the oil extraction and enrichment of n-3 PUFAs, less effort has been directed toward green refining of oils from fish and algae. Enzymatic processing and ultrasound-assisted extraction with environment-friendly solvents are the most promising green technologies for extracting fish oil, whereas pressurized extractions are suitable for extracting microalgae oil. Lipase-catalysed ethanolysis of fish and algae oil is a promising green technology for enriching n-3 PUFAs. Green refining technologies such as phospholipase- and membrane-assisted degumming deserve investigation for application in fish and algal oils. In the current review, we critically examined the currently existing research on technologies applied at each of the steps involved in the production of oils rich in n-3 PUFAs from fish and algae species. Special attention was placed on assessment of green technologies in comparison with conventional processing methods.
Collapse
Affiliation(s)
- Alexis Marsol-Vall
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Ella Aitta
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Zheng Guo
- Biological and Chemical Engineering, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|