1
|
Hu W, Zhang X, Shen Y, Meng X, Wu Y, Tong P, Li X, Chen H, Gao J. Quantifying allergenic proteins using antibody-based methods or liquid chromatography-mass spectrometry/mass spectrometry: A review about the influence of food matrix, extraction, and sample preparation. Compr Rev Food Sci Food Saf 2024; 23:e70029. [PMID: 39379311 DOI: 10.1111/1541-4337.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xuanyi Meng
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yong Wu
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
2
|
Jawanda SK, Ramaswamy HS. Yellow Mustard Protein a Immunoreactivity Reduction Through Seed Germination, Lactic Acid Fermentation, and Cooking. Foods 2024; 13:3498. [PMID: 39517281 PMCID: PMC11545414 DOI: 10.3390/foods13213498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Food allergens are becoming increasingly threatening and are disrupting the health and social structure of a significantly large population worldwide. Proteins from mustard are among the well-recognized food allergens which affect many sensitive individuals. Many processing methods are continually being explored to reduce allergen immunoreactivity and for developing hypoallergenic foods. Cooking, germination, and fermentation have been evaluated to attenuate the immunoreactivity of food allergens. The objective of this study is to evaluate the effect of seed germination, lactic acid fermentation, and/or cooking on yellow mustard seed protein immunoreactivity (IR) (protein A) using ELISA techniques. Samples from five-day germination at 35-40 °C and three-day fermentation between 25 °C and 35 °C were evaluated. The germination and fermentation processes yielded varying reductions in the IRs of mustard proteins, with a combined yield of about 90% reduction. When complemented with further stovetop cooking, protein IR reduction was extended up to 98%, while cooking alone resulted only in about a 70% reduction. FTIR results confirmed that changes in mustard protein conformation maybe due to the unfolding and/or denaturation of mustard proteins. These processing methods are beneficial as they not only help reduce the native mustard protein IR, but also increased inherent antioxidant activities in germinated and fermented mustard seeds.
Collapse
Affiliation(s)
| | - Hosahalli S. Ramaswamy
- Department of Food Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste Anne de Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
3
|
Hu W, Xiong Z, Meng X, Wu Y, Tong P, Gao J, Li X, Chen H. Lipid matrix-specific pretreatment method for enhancing the extractability and allergenicity maintenance of bovine milk allergens in ELISA detection. Food Chem 2024; 452:139462. [PMID: 38723563 DOI: 10.1016/j.foodchem.2024.139462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
The presence of various components in the food matrix makes allergen detection difficult and inaccurate, and pretreatment is an innovative breakthrough point. Food matrices were categorised based on their composition. Subsequently, a pretreatment method was established using a combination of ultrasound-assisted n-hexane degreasing and weakly alkaline extraction systems to enhance the detection accuracy of bovine milk allergens. Results showed that more allergens were obtained with less structural destruction, as demonstrated using immunological quantification and spectral analysis. Concurrently, allergenicity preservation was confirmed through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, a KU812 cell degranulation model, and western blotting. The method exhibited good accuracy (bias, 8.47%), repeatability (RSDr, 1.52%), and stability (RSDR, 5.65%). In foods with high lipid content, such as chocolate, the allergen content was 2.29-fold higher than that of commercial kits. Laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM) analyses revealed a significant decrease in fat content after post-pretreatment using our method. In addition, colloidal stability surpassed that achieved using commercial kits, as indicated through the PSA and zeta potential results. The results demonstrated the superiority of the extractability and allergenicity maintenance of lipid matrix-specific pretreatment methods for improving the accuracy of ELISA based allergen detection in real food.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Ziyi Xiong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Chen S, Downs ML. Development of a Mass Spectrometry-Based Method for Quantification of Total Cashew Protein in Roasting Oil. J AOAC Int 2024; 107:443-452. [PMID: 38430003 DOI: 10.1093/jaoacint/qsae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Food allergen cross-contact during food preparation and production is one of the causes of unintentional allergen presence in packaged foods. However, little is known about allergen cross-contact in shared frying or roasting oil, which prevents the establishment of effective allergen controls and may put allergic individuals at risk. To better understand the quantity of allergen transferred to frying oil and subsequent products, an analytical method is needed for quantifying protein in oil that has been exposed to frying/roasting conditions. OBJECTIVE The goal of this study was to develop a parallel reaction monitoring LC-MS/MS method to quantify the amount of cashew protein in shared roasting oil. METHODS The sample preparation method was evaluated to improve protein extractability and peptide performance. Four quantitative peptides representing cashew 2S and 11S proteins were selected as targets based on their sensitivity, heat stability, and specificity. A calibration strategy was developed to quantify the amount of total cashew protein in oil. Method performance was evaluated using a heated cashew-in-oil model system. RESULTS The method showed high recovery in oil samples spiked with 100 or 10 parts per million (ppm) total cashew protein heated at 138 or 166°C for 2-30 min. Samples (100 ppm total cashew protein) heated for 30 min had more than 90% recovery when treated at 138°C and more than 50% when heated at 166°C. CONCLUSION The method is fit-for-purpose for the analysis of cashew allergen cross-contact in oil. HIGHLIGHTS A novel MS-based method was developed that can accurately quantify the amount of cashew protein present in heated oil.
Collapse
Affiliation(s)
- Shimin Chen
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, Department of Food Science and Technology, 283 Food Innovation Center, 1901 North 21st St, Lincoln, NE 68588, United States
- George L. Wright Jr. Center for Biomedical Proteomics, Eastern Virginia Medical School, 429 Lester Hall, 651 Colley Ave, Norfolk, VA 23507, United States
| | - Melanie L Downs
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, Department of Food Science and Technology, 283 Food Innovation Center, 1901 North 21st St, Lincoln, NE 68588, United States
| |
Collapse
|
5
|
Cubero-Leon E, Emons H, O'Connor G, Nørgaard J, Robouch P. Food allergen analysis: Considerations for establishing a reference measurement system to implement EU legislation. Food Chem 2023; 424:136391. [PMID: 37229898 PMCID: PMC10282894 DOI: 10.1016/j.foodchem.2023.136391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Inconsistent quantification results obtained from various analytical methods for food allergen testing hamper an accurate quantitative risk assessment and its regulatory implementation. In order to overcome such problems, a concept aiming at ensuring the comparability of quantitative food allergen measurement results is presented here. It is based on an approach called reference measurement system for food allergens, which uses a commonly agreed reference, namely the 'mass fraction of total protein of the allergenic ingredient in food'. The necessary system components are outlined, consisting of a primary reference measurement method, a certified reference material and a reference laboratory. This metrology-based concept can be applied to quantify various food allergens determined with different analytical procedures. The example of 'milk in cookies' is used to demonstrate the approach.
Collapse
Affiliation(s)
| | - Hendrik Emons
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Gavin O'Connor
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Jørgen Nørgaard
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Piotr Robouch
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| |
Collapse
|
6
|
Truzzi E, Marchetti L, Fratagnoli A, Rossi MC, Bertelli D. Novel application of 1H NMR spectroscopy coupled with chemometrics for the authentication of dark chocolate. Food Chem 2023; 404:134522. [DOI: 10.1016/j.foodchem.2022.134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
7
|
Henrottin J, Pilolli R, Huet AC, van Poucke C, Nitride C, De Loose M, Tranquet O, Larré C, Adel-Patient K, Bernard H, Mills EC, Gillard N, Monaci L. Optimization of a sample preparation workflow based on UHPLC-MS/MS method for multi-allergen detection in chocolate: An outcome of the ThRAll project. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Zhao J, Khan MU, Chen J, Li S, Dasanayaka BP, Timira V, Li Y, Zhang J, Lin H, Li Z. A sensitive sandwich enzyme‐linked immunosorbent assay (sELISA) targeted multiple wheat protein fractions for the detection of several cereal grains in processed foods. J Food Sci 2022; 87:1514-1526. [DOI: 10.1111/1750-3841.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering Ocean University of China Qingdao P. R. China
| | - Mati Ullah Khan
- College of Food Science and Engineering Ocean University of China Qingdao P. R. China
| | - Jin Chen
- College of Food Science and Engineering Ocean University of China Qingdao P. R. China
| | - Siyue Li
- College of Food Science and Engineering Ocean University of China Qingdao P. R. China
| | | | - Vaileth Timira
- College of Food Science and Engineering Ocean University of China Qingdao P. R. China
| | - Yonghong Li
- College of Food Science and Engineering Ocean University of China Qingdao P. R. China
- HOB Biotech Group Corp., Ltd Suzhou City P. R. China
| | - Jiukai Zhang
- Agro‐Product Safety Research Center Chinese Academy of Inspection and Quarantine Beijing P. R. China
| | - Hong Lin
- College of Food Science and Engineering Ocean University of China Qingdao P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering Ocean University of China Qingdao P. R. China
| |
Collapse
|
9
|
Tracking Mustard Slurry Allergen Reactivity Through Stove Top Cooking and Enhanced Thermal Treatments Using Sandwich ELISA. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Huet AC, Paulus M, Henrottin J, Brossard C, Tranquet O, Bernard H, Pilolli R, Nitride C, Larré C, Adel-Patient K, Monaci L, Mills ENC, De Loose M, Gillard N, Van Poucke C. Development of incurred chocolate bars and broth powder with six fully characterised food allergens as test materials for food allergen analysis. Anal Bioanal Chem 2022; 414:2553-2570. [PMID: 35201367 DOI: 10.1007/s00216-022-03912-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
The design and production of incurred test materials are critical for the development and validation of methods for food allergen analysis. This is because production and processing conditions, together with the food matrix, can modify allergens affecting their structure, extractability and detectability. For the ThRAll project, which aims to develop a mass spectrometry-based reference method for the simultaneous accurate quantification of six allergenic ingredients in two hard to analyse matrices. Two highly processed matrices, chocolate bars and broth powder, were selected to incur with six allergenic ingredients (egg, milk, peanut, soy, hazelnut and almond) at 2, 4, 10 and 40 mg total allergenic protein/kg food matrix using a pilot-scale food manufacturing plant. The allergenic activity of the ingredients incurred was verified using food-allergic patient serum/plasma IgE, the homogeneity of the incurred matrices verified and their stability at 4 °C assessed over at least 30-month storage using appropriate enzyme-linked immunosorbent assays (ELISA). Allergens were found at all levels from the chocolate bar and were homogenously distributed, apart from peanut and soy which could only be determined above 4 mg total allergenic ingredient protein/kg. The homogeneity assessment was restricted to analysis of soy, milk and peanut for the broth powder but nevertheless demonstrated that the allergens were homogeneously distributed. All the allergens tested were found to be stable in the incurred matrices for at least 30 months demonstrating they are suitable for method development.
Collapse
Affiliation(s)
- Anne-Catherine Huet
- CER Groupe, Analytical Laboratory, Rue du Point du Jour 8, 6900, Marloie, Belgium.
| | - Melody Paulus
- CER Groupe, Analytical Laboratory, Rue du Point du Jour 8, 6900, Marloie, Belgium
| | - Jean Henrottin
- CER Groupe, Analytical Laboratory, Rue du Point du Jour 8, 6900, Marloie, Belgium
| | - Chantal Brossard
- INRAE, UR1268 BIA, Rue de la Géraudière, BP71627, 44316, Nantes, France
| | - Olivier Tranquet
- INRAE, UR1268 BIA, Rue de la Géraudière, BP71627, 44316, Nantes, France.,INRAE, Aix-Marseille University, Biodiversité Et Biotechnologie Fongiques (BBF), UMR1163, 13009, Marseille, France
| | - Hervé Bernard
- INRAE-CEA, Service de Pharmacologie Et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Bât 136-CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - Chiara Nitride
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Colette Larré
- INRAE, UR1268 BIA, Rue de la Géraudière, BP71627, 44316, Nantes, France
| | - Karine Adel-Patient
- INRAE-CEA, Service de Pharmacologie Et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Bât 136-CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - E N Clare Mills
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Marc De Loose
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 115, 9820, Merelbeke, Belgium
| | - Nathalie Gillard
- CER Groupe, Analytical Laboratory, Rue du Point du Jour 8, 6900, Marloie, Belgium
| | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090, Melle, Belgium
| |
Collapse
|
11
|
Zhu Y, Hsieh YHP. Effect of storage and processing on the immunodetectability of fish proteins using pooled monoclonal antibodies in ELISA and dot blot. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Nguyen AV, Lee D, Williams KM, Jackson LS, Bedford B, Kwon J, Scholl PF, Khuda SE. Effectiveness of antibody specific for heat-processed milk proteins and incurred calibrants for ELISA-based quantification of milk in dark chocolate matrices. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Perez M, Lopez-Yerena A, Vallverdú-Queralt A. Traceability, authenticity and sustainability of cocoa and chocolate products: a challenge for the chocolate industry. Crit Rev Food Sci Nutr 2020; 62:475-489. [DOI: 10.1080/10408398.2020.1819769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria Perez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anallely Lopez-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
14
|
Holzhauser T, Johnson P, Hindley JP, O'Connor G, Chan CH, Costa J, Fæste CK, Hirst BJ, Lambertini F, Miani M, Robert MC, Röder M, Ronsmans S, Bugyi Z, Tömösközi S, Flanagan SD. Are current analytical methods suitable to verify VITAL® 2.0/3.0 allergen reference doses for EU allergens in foods? Food Chem Toxicol 2020; 145:111709. [PMID: 32866515 DOI: 10.1016/j.fct.2020.111709] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/25/2023]
Abstract
Food allergy affects up to 6% of Europeans. Allergen identification is important for the risk assessment and management of the inadvertent presence of allergens in foods. The VITAL® initiative for voluntary incidental trace allergen labeling suggests protein reference doses, based on clinical reactivity in food challenge studies, at or below which voluntary labelling is unnecessary. Here, we investigated if current analytical methodology could verify the published VITAL® 2.0 doses, that were available during this analysis, in serving sizes between 5 and 500 g. Available data on published and commercial ELISA, PCR and mass spectrometry methods, especially for the detection of peanuts, soy, hazelnut, wheat, cow's milk and hen's egg were reviewed in detail. Limit of detection, quantitative capability, matrix compatibility, and specificity were assessed. Implications by the recently published VITAL® 3.0 doses were also considered. We conclude that available analytical methods are capable of reasonably robust detection of peanut, soy, hazelnut and wheat allergens for levels at or below the VITAL® 2.0 and also 3.0 doses, with some methods even capable of achieving this in a large 500 g serving size. Cow's milk and hen's egg are more problematic, largely due to matrix/processing incompatibility. An unmet need remains for harmonized reporting units, available reference materials, and method ring-trials to enable validation and the provision of comparable measurement results.
Collapse
Affiliation(s)
- Thomas Holzhauser
- Paul-Ehrlich-Institut, Division of Allergology, D-63225, Langen, Germany.
| | - Philip Johnson
- University of Nebraska-Lincoln, Department of Food Science and Technology, FARRP, Rm 266 Food Innovation Center, 1901 N 21 Street, PO Box 886207, Lincoln, NE, 68588-6207, USA.
| | | | - Gavin O'Connor
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany.
| | | | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Christiane K Fæste
- Norwegian Veterinary Institute, Toxicology Research Group, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| | | | | | - Michela Miani
- International Life Sciences Institute, European Branch, ILSI Europe a.i.s.b.l., Brussels, Belgium.
| | - Marie-Claude Robert
- Nestlé Research, Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland.
| | - Martin Röder
- Ifp Institut für Produktqualität GmbH, Wagner-Régeny-Str. 8, 12489, Berlin, Germany.
| | | | - Zsuzsanna Bugyi
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary.
| | - Sándor Tömösközi
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary.
| | | |
Collapse
|
15
|
Segura-Gil I, Galan-Malo P, Mata L, Tobajas AP, Calvo M, Sánchez L, Pérez MD. Influence of different extraction conditions on the detection of glycinin and β-conglycinin in model processed foods by ELISA. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1087-1098. [PMID: 32429778 DOI: 10.1080/19440049.2020.1757163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
The presence of undeclared soy proteins in food can cause severe reactions in soy allergic individuals. The extraction of target proteins from processed foods is a crucial step in allergen detection by immunoassays, as only successfully extracted target proteins can be detected by the specific antibodies. The effectiveness was studied of different conditions (type of buffer, temperature and time of incubation) on the extraction of total protein, and concentration of glycinin and β-conglycinin from different food matrices. The yields were determined using a soy protein isolate and three processed foods (sausage, bread and pâté) incurred with soy proteins. The yields were affected by the processing of analysed products and the composition and pH of the extraction buffers. Neutral and alkaline buffers (pH from 7.4 to 10.6) exhibited good protein extraction capacity and detectability of the specific target proteins. Denaturing additives and highly alkaline buffer (pH 12) extracted more crude protein but they were incompatible with the ELISA assay. Overall, the best results were obtained using phosphate (pH 7.4) and Tris/HCl (pH 8.5) buffers in the presence of 0.5 M NaCl. Crude protein yield of food extracts did not correlate with that of glycinin and β-conglycinin, whereas a good relationship was found between the yields of the two proteins.
Collapse
Affiliation(s)
- Isabel Segura-Gil
- Departamento de Producción Animal y Ciencia de los Alimentos. Facultad de Veterinaria. Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | | | | | - Ana P Tobajas
- Departamento de Producción Animal y Ciencia de los Alimentos. Facultad de Veterinaria. Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Miguel Calvo
- Departamento de Producción Animal y Ciencia de los Alimentos. Facultad de Veterinaria. Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos. Facultad de Veterinaria. Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - María D Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos. Facultad de Veterinaria. Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| |
Collapse
|
16
|
Dawson DD, Martin RW. Investigation of Chocolate Matrix Interference on Cannabinoid Analytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5699-5706. [PMID: 32357297 DOI: 10.1021/acs.jafc.0c01161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The first known findings of chocolate matrix interference on cannabinoid analytes is reported. Stock solutions of four biogenic cannabinoids (Δ9-tetrahydrocannabinol, cannabidiol, cannabinol, and cannabigerol) and one synthetic cannabinoid (cannabidiol dimethyl ether) are subjected to milk chocolate, dark chocolate, and cocoa powder. A clear trend of matrix interference is observed, which correlates to several chemical factors. The amount of chocolate present is directly proportional to the degree of matrix interference, which yields lower percent recovery rates for the cannabinoid analyte. Structural features on the cannabinoid analytes are shown to affect matrix interference, because cannabinoids with fewer phenolic -OH groups suffer from increased signal suppression. Additionally, aromatization of the p-menthyl moiety appears to correlate with enhanced matrix effects from chocolate products high in cocoa solids. These findings represent the first known documentation of chocolate matrix interference in cannabinoid analysis, which potentially has broad implications for complex matrix testing in the legal Cannabis industry.
Collapse
Affiliation(s)
- David D Dawson
- CW Analytical, 851 81st Avenue, Suite D, Oakland, California 94621, United States
| | - Robert W Martin
- CW Analytical, 851 81st Avenue, Suite D, Oakland, California 94621, United States
| |
Collapse
|
17
|
Marzano V, Tilocca B, Fiocchi AG, Vernocchi P, Levi Mortera S, Urbani A, Roncada P, Putignani L. Perusal of food allergens analysis by mass spectrometry-based proteomics. J Proteomics 2020; 215:103636. [DOI: 10.1016/j.jprot.2020.103636] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
|
18
|
High-resolution mass spectrometry-based selection of peanut peptide biomarkers considering food processing and market type variation. Food Chem 2020; 304:125428. [DOI: 10.1016/j.foodchem.2019.125428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/14/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022]
|
19
|
Enhanced quantitation of egg allergen in foods using incurred standards and antibodies against processed egg in a model ELISA. Anal Chim Acta 2019; 1081:157-167. [DOI: 10.1016/j.aca.2019.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022]
|
20
|
Galan-Malo P, Pellicer S, Pérez MD, Sánchez L, Razquin P, Mata L. Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food. Food Chem 2019; 293:41-48. [DOI: 10.1016/j.foodchem.2019.04.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/21/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
|
21
|
Sharma GM, Chatim A, Ferguson M, Williams KM. Extraction Conditions Affect the Immunoreactivity of Peanut Allergens. J Food Sci 2019; 84:2357-2363. [PMID: 31364176 DOI: 10.1111/1750-3841.14712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/14/2019] [Accepted: 06/02/2019] [Indexed: 11/28/2022]
Abstract
Peanut allergic consumers rely on food package labels to avoid foods containing peanut. The inadvertent presence of peanut in foods due to cross-contact can be fatal if ingestion of such food leads to an allergic reaction. Analytical methods are available to detect undeclared peanut in foods. However, depending on the type of food matrix and food processing parameters, method performance can be adversely affected due to reduction in the extraction efficiency of peanut proteins. Temperature and probe sonication were used as a preincubation treatment for peanut flour slurries to assess their effect on the total peanut protein solubility from raw, light-roasted, and dark-roasted peanut flours. The effect of these treatments on the immunoreactivity of peanut allergens (Ara h 1, Ara h 2, Ara h 3, and Ara h 6) was determined by an indirect enzyme-linked immunosorbent assay using antibodies raised against these individual peanut proteins. Preincubation at 50 °C did not significantly improve the peanut protein solubility, whereas an increase in protein solubility was observed when light- and dark-roasted peanut flour slurries were preincubated at 90 °C or sonicated. The immunoreactivity of peanut allergens varied depending on the degree of peanut flour roasting and type of preincubation treatment. Overall, the immunoreactivity of peanut allergens from most peanut flour slurries was unaffected when preincubated at 50 °C for up to 60 min or sonicated with a probe for up to 5 min, whereas preincubation at 90 °C resulted in a time-dependent reduction in immunoreactivity of peanut allergens. Sonication treatment may improve peanut protein extraction without markedly affecting their immunoreactivity. PRACTICAL APPLICATION: Extraction of peanut proteins is vital for developed analytical methods to estimate peanut allergens in foods. The manuscript describes the effect of two different temperatures (50 and 90 °C) and probe-type sonication on peanut protein solubility. The findings suggest sonication can improve peanut protein solubility without markedly affecting their immunoreactivity.
Collapse
Affiliation(s)
- Girdhari M Sharma
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD
| | - Ajay Chatim
- Joint Inst. for Food Safety and Applied Nutrition, Univ. of Maryland, College Park, MD
| | - Martine Ferguson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD
| | - Kristina M Williams
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD
| |
Collapse
|
22
|
Jayasena S, Wijeratne SS, Taylor SL, Baumert JL. Improved extraction of peanut residues from a wheat flour matrix for immunochemical detection. Food Chem 2019; 278:832-840. [DOI: 10.1016/j.foodchem.2018.11.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 12/01/2022]
|
23
|
The role of incurred materials in method development and validation to account for food processing effects in food allergen analysis. Anal Bioanal Chem 2019; 411:4465-4480. [PMID: 30758527 DOI: 10.1007/s00216-019-01642-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
The issue of undeclared allergens represents a matter of great concern, being the subject of many alert notifications by the Rapid Alert System for Food and Feed portal of the European Commission, often leading to food recalls. The availability of reliable analytical approaches able to detect and quantify hidden allergens in processed foods is increasingly requested by the food industry, food safety authorities and regulatory bodies to protect sensitive consumers' health. The present review discusses the fundamental role of incurred materials for method development and analytical performance assessment in a metrology perspective on testing for undeclared allergens in processed foodstuffs. Due to the nature of the analytes and their susceptibility to various processing effects, reliability and comparability of results have posed a great challenge. In this context, the use of incurred samples as reference materials permits simulation of the effects of food processing on target analyte structure affecting analyte extractability and detectability. Graphical abstract ᅟ.
Collapse
|
24
|
Selection of egg peptide biomarkers in processed food products by high resolution mass spectrometry. J Chromatogr A 2019; 1584:115-125. [DOI: 10.1016/j.chroma.2018.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/05/2018] [Accepted: 11/18/2018] [Indexed: 11/22/2022]
|
25
|
Gu S, Chen N, Zhou Y, Zhao C, Zhan L, Qu L, Cao C, Han L, Deng X, Ding T, Song C, Ding Y. A rapid solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for simultaneous screening of multiple allergens in chocolates. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.07.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Oba S, Toker OS, Palabiyik İ, Konar N, Goktas H, Cukur Y, Artik N, Sagdic O. Rheological and melting properties of sucrose-free dark chocolate. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1362652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sirin Oba
- Department of Food Processing, Amasya University, Suluova Vocational School, Amasya, Turkey
| | - Omer Said Toker
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Yildiz Technical University, İstanbul, Turkey
| | - İbrahim Palabiyik
- Agricultural Faculty, Food Engineering Department, Namik Kemal University, Tekirdağ, Turkey
| | - Nevzat Konar
- Food Engineering Department, Engineering and Architecture Faculty, Siirt University, Siirt, Turkey
| | - Hamza Goktas
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Yildiz Technical University, İstanbul, Turkey
| | - Yusuf Cukur
- R&D Department, Elvan Food, Istanbul, Turkey
| | - Nevzat Artik
- Engineering Faculty, Food Engineering Department, Ankara University, Ankara, Turkey
| | - Osman Sagdic
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Yildiz Technical University, İstanbul, Turkey
| |
Collapse
|
27
|
Sharma GM, Khuda SE, Parker CH, Eischeid AC, Pereira M. Detection of Allergen Markers in Food: Analytical Methods. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
28
|
Costa J, Fernandes TJ, Villa C, P.P. Oliveira MB, Mafra I. Advances in Food Allergen Analysis. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
29
|
Pilolli R, De Angelis E, Monaci L. Streamlining the analytical workflow for multiplex MS/MS allergen detection in processed foods. Food Chem 2016; 221:1747-1753. [PMID: 27979156 DOI: 10.1016/j.foodchem.2016.10.110] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/26/2016] [Accepted: 10/23/2016] [Indexed: 01/04/2023]
Abstract
Allergenic ingredients in pre-packaged foods are regulated by EU legislation mandating their inclusion on labels. In order to protect allergic consumers, sensitive analytical methods are required for detect allergen traces in different food products. As a follow-up to our previous investigations, an optimized, sensitive, label-free LC-MS/MS method for multiplex detection of five allergenic ingredients in a processed food matrix is proposed. A cookie base was chosen as a complex food matrix and home-made cookies incurred with whole egg, skimmed milk, soy flour, ground hazelnut and ground peanut were prepared at laboratory scale. In order to improve the analytical workflow both protein extraction and purification protocols were optimized and finally a sensitive streamlined SRM based analytical method for allergens detection in incurred cookies was devised. The effect of baking on the detection of selected markers was also investigated.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
30
|
Abstract
Food allergy is receiving increased attention in recent years. Because there is currently no known cure for food allergy, avoiding the offending food is the best defense for sensitive individuals. Type I food allergy is mediated by food proteins, and thus, theoretically, any food protein is a potential allergen. Variability of an individual's immune system further complicates attempts to understand allergen-antibody interaction. In this article, we briefly review food allergy occurrence, prevalence, mechanisms, and detection. Efforts aimed at reducing/eliminating allergens through food processing are discussed. Future research needs are addressed.
Collapse
Affiliation(s)
- Shridhar K Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Changqi Liu
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Valerie D Zaffran
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| |
Collapse
|
31
|
|
32
|
Effects of buffer additives and thermal processing methods on the solubility of shrimp (Penaeus monodon) proteins and the immunoreactivity of its major allergen. Food Chem 2016; 200:146-53. [PMID: 26830572 DOI: 10.1016/j.foodchem.2016.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/30/2015] [Accepted: 01/06/2016] [Indexed: 11/17/2022]
Abstract
This study examines the potential of two buffer additives (Tween 20 and DTT) to improve the solubility of proteins from shrimp subjected to different heat treatments and the allergenicity of tropomyosin in the extracts. The concentration of soluble proteins extracted by all the buffers from processed shrimp was significantly reduced compared with untreated samples. The concentration of total soluble proteins from heat treated shrimp increased significantly when phosphate buffer containing both surfactant and reducing agent was used as the extraction buffer. However, the concentrations of heat-stable proteins in the buffers were mostly similar. The electrophoretic profile of extracted proteins showed that tropomyosin is very stable under the different heat treatment methods used in this study except for high pressure steaming where the intensity of tropomyosin band was reduced. Competitive inhibition ELISA showed that high pressure steaming reduced the allergenicity of tropomyosin compared with other heat treatments methods.
Collapse
|
33
|
Parker CH, Khuda SE, Pereira M, Ross MM, Fu TJ, Fan X, Wu Y, Williams KM, DeVries J, Pulvermacher B, Bedford B, Zhang X, Jackson LS. Multi-allergen Quantitation and the Impact of Thermal Treatment in Industry-Processed Baked Goods by ELISA and Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10669-10680. [PMID: 26595064 DOI: 10.1021/acs.jafc.5b04287] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Undeclared food allergens account for 30-40% of food recalls in the United States. Compliance with ingredient labeling regulations and the implementation of effective manufacturing allergen control plans require the use of reliable methods for allergen detection and quantitation in complex food products. The objectives of this work were to (1) produce industry-processed model foods incurred with egg, milk, and peanut allergens, (2) compare analytical method performance for allergen quantitation in thermally processed bakery products, and (3) determine the effects of thermal treatment on allergen detection. Control and allergen-incurred cereal bars and muffins were formulated in a pilot-scale industry processing facility. Quantitation of egg, milk, and peanut in incurred baked goods was compared at various processing stages using commercial enzyme-linked immunosorbent assay (ELISA) kits and a novel multi-allergen liquid chromatography (LC)-tandem mass spectrometry (MS/MS) multiple-reaction monitoring (MRM) method. Thermal processing was determined to negatively affect the recovery and quantitation of egg, milk, and peanut to different extents depending on the allergen, matrix, and analytical test method. The Morinaga ELISA and LC-MS/MS quantitative methods reported the highest recovery across all monitored allergens, whereas the ELISA Systems, Neogen BioKits, Neogen Veratox, and R-Biopharm ELISA Kits underperformed in the determination of allergen content of industry-processed bakery products.
Collapse
Affiliation(s)
- Christine H Parker
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 5100 Paint Branch Parkway, College Park, Maryland 20740, United States
| | - Sefat E Khuda
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 8301 Muirkirk Road, Laurel, Maryland 20708, United States
| | - Marion Pereira
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 8301 Muirkirk Road, Laurel, Maryland 20708, United States
| | - Mark M Ross
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 5100 Paint Branch Parkway, College Park, Maryland 20740, United States
| | - Tong-Jen Fu
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 6502 South Archer Road, Bedford Park, Illinois 60501, United States
| | - Xuebin Fan
- Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
| | - Yan Wu
- Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
| | - Kristina M Williams
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 8301 Muirkirk Road, Laurel, Maryland 20708, United States
| | - Jonathan DeVries
- James Ford Bell Technical Center, General Mills , 9000 Plymouth Avenue North, Golden Valley, Minnesota 55427, United States
| | - Brian Pulvermacher
- James Ford Bell Technical Center, General Mills , 9000 Plymouth Avenue North, Golden Valley, Minnesota 55427, United States
| | - Binaifer Bedford
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 6502 South Archer Road, Bedford Park, Illinois 60501, United States
| | - Xi Zhang
- Institute for Food Safety and Health, Illinois Institute of Technology , Bedford Park, Illinois 60501, United States
| | - Lauren S Jackson
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 6502 South Archer Road, Bedford Park, Illinois 60501, United States
| |
Collapse
|